Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Viruses ; 14(4)2022 04 14.
Article in English | MEDLINE | ID: mdl-35458541

ABSTRACT

Critically ill COVID-19 patients are at high risk for venous thromboembolism (VTE), namely deep vein thrombosis (DVT) and/or pulmonary embolism (PE), and death. The optimal anticoagulation strategy in critically ill patients with COVID-19 remains unknown. This study investigated the ante mortem incidence as well as postmortem prevalence of VTE, the factors predictive of VTE, and the impact of changed anticoagulation practice on patient survival. We conducted a consecutive retrospective analysis of postmortem COVID-19 (n = 64) and non-COVID-19 (n = 67) patients, as well as ante mortem COVID-19 (n = 170) patients admitted to the University Medical Center Hamburg-Eppendorf (Hamburg, Germany). Baseline patient characteristics, parameters related to the intensive care unit (ICU) stay, and the clinical and autoptic presence of VTE were evaluated and statistically compared between groups. The occurrence of VTE in critically ill COVID-19 patients is confirmed in both ante mortem (17%) and postmortem (38%) cohorts. Accordingly, comparing the postmortem prevalence of VTE between age- and sex-matched COVID-19 (43%) and non-COVID-19 (0%) cohorts, we found the statistically significant increased prevalence of VTE in critically ill COVID-19 cohorts (p = 0.001). A change in anticoagulation practice was associated with the statistically significant prolongation of survival time (HR: 2.55, [95% CI 1.41-4.61], p = 0.01) and a reduction in VTE occurrence (54% vs. 25%; p = 0.02). In summary, in the autopsy as well as clinical cohort of critically ill patients with COVID-19, we found that VTE was a frequent finding. A change in anticoagulation practice was associated with a statistically significantly prolonged survival time.


Subject(s)
COVID-19 , Venous Thromboembolism , Anticoagulants/therapeutic use , Autopsy , COVID-19/epidemiology , Critical Illness , Humans , Retrospective Studies , Risk Factors , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
3.
Sci Rep ; 11(1): 19342, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588486

ABSTRACT

Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic with significant mortality. Accurate information on the specific circumstances of death and whether patients died from or with SARS-CoV-2 is scarce. To distinguish COVID-19 from non-COVID-19 deaths, we performed a systematic review of 735 SARS-CoV-2-associated deaths in Hamburg, Germany, from March to December 2020, using conventional autopsy, ultrasound-guided minimally invasive autopsy, postmortem computed tomography and medical records. Statistical analyses including multiple logistic regression were used to compare both cohorts. 84.1% (n = 618) were classified as COVID-19 deaths, 6.4% (n = 47) as non-COVID-19 deaths, 9.5% (n = 70) remained unclear. Median age of COVID-19 deaths was 83.0 years, 54.4% were male. In the autopsy group (n = 283), the majority died of pneumonia and/or diffuse alveolar damage (73.6%; n = 187). Thromboses were found in 39.2% (n = 62/158 cases), pulmonary embolism in 22.1% (n = 56/253 cases). In 2020, annual mortality in Hamburg was about 5.5% higher than in the previous 20 years, of which 3.4% (n = 618) represented COVID-19 deaths. Our study highlights the need for mortality surveillance and postmortem examinations. The vast majority of individuals who died directly from SARS-CoV-2 infection were of advanced age and had multiple comorbidities.


Subject(s)
Autopsy , COVID-19 , Comorbidity , Adult , Age Factors , Aged , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , COVID-19/diagnosis , COVID-19/epidemiology , Female , Germany/epidemiology , Humans , Lung/pathology , Male , Middle Aged , Mortality , Pneumonia , Prospective Studies , Pulmonary Embolism , SARS-CoV-2 , Thrombosis
4.
Hepatol Commun ; 4(3): 409-424, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32140657

ABSTRACT

The transcription factor promyelocytic leukemia zinc finger protein (PLZF) is involved in the development of natural killer (NK) cells and innate lymphoid cells, including liver-resident NK cells in mice. In human NK cells, the role of PLZF in liver residency is still unknown. Expression of PLZF in matched human peripheral blood- and liver-derived NK cells and the association of PLZF expression with surface molecules and transcription factors relevant for tissue residency were investigated using multiparameter flow cytometry and assessing single-cell messenger RNA (mRNA) levels. Intrahepatic cluster of differentiation (CD)56bright NK cells expressed significantly higher levels of PLZF than peripheral blood CD56bright NK cells, which were predominantly PLZFlo. Expression of PLZF was highest within C-X-C motif chemokine receptor 6 (CXCR6)+CD69+ liver-resident NK cells among intrahepatic CD56bright NK cell populations. Association of PLZF with liver-residency markers was also reflected at mRNA levels. A small PLZFhiCD56bright NK cell population was identified in peripheral blood that also expressed the liver-residency markers CXCR6 and CD69 and shared functional characteristics with liver-resident NK cells. Conclusion: PLZF is implicated as part of a transcriptional network that promotes liver residency of human NK cells. Expression of liver-homing markers on peripheral blood PLZFhiCD56bright NK cells identifies an intermediate population potentially contributing to the maintenance of liver-resident NK cells.

5.
Front Immunol ; 10: 1247, 2019.
Article in English | MEDLINE | ID: mdl-31231382

ABSTRACT

Macrophages play central roles in inflammatory reactions and initiation of immune responses during infections. More than 80% of total tissue macrophages are described to be located in the liver as liver-resident macrophages, also named Kupffer cells (KCs). While studies in mice have established a central role of liver-resident KCs in regulating liver inflammation, their phenotype and function are not well-characterized in humans. Comparing paired human liver and peripheral blood samples, we observed significant differences in the distribution of macrophage (Mφ) subsets, with lower frequencies of CD14hiCD16lo and higher frequencies of CD14int-hiCD16int Mφ in human livers. Intrahepatic Mφ consisted of diverse subsets with differential expression of CD49a, a liver-residency marker previously described for human and mice NK cells, and VSIG4 and/or MARCO, two recently described human tissue Mφ markers. Furthermore, intrahepatic CD49a+ Mφ expressed significantly higher levels of maturation and activation markers, exhibited higher baseline levels of TNF-α, IL-12, and IL-10 production, but responded less to additional in vitro TLR stimulation. In contrast, intrahepatic CD49a- Mφ were highly responsive to stimulation with TLR ligands, similar to what was observed for CD49a- monocytes (MOs) in peripheral blood. Taken together, these studies identified populations of CD49a+, VSIG4+, and/or MARCO+ Mφ in human livers, and demonstrated that intrahepatic CD49a+ Mφ differed in phenotype and function from intrahepatic CD49a- Mφ as well as from peripheral blood-derived monocytes.


Subject(s)
Integrin alpha1/immunology , Liver/immunology , Macrophages/cytology , Macrophages/immunology , Humans
6.
PLoS One ; 13(7): e0201170, 2018.
Article in English | MEDLINE | ID: mdl-30028872

ABSTRACT

Metabolism is a critical basis for immune cell functionality. It was recently shown that NK cell subsets from peripheral blood modulate their expression of nutrient receptors following cytokine stimulation, demonstrating that NK cells can adjust to changes in metabolic requirements. As nutrient availability in blood and tissues can significantly differ, we examined NK cells isolated from paired blood-liver and blood-spleen samples and compared expression of the nutrient transporters Glut1, CD98 and CD71. CD56bright tissue-resident (CXCR6+) NK cells derived from livers and spleens expressed lower levels of Glut1 but higher levels of the amino acid transporter CD98 following stimulation than CD56bright NK cells from peripheral blood. In line with that, CD56dim NK cells, which constitute the main NK cell population in the peripheral blood, expressed higher levels of Glut1 and lower levels of CD98 and CD71 compared to liver CD56bright NK cells. Our results show that NK cells from peripheral blood differ from liver- and spleen-resident NK cells in the expression profile of nutrient transporters, consistent with a cell-adaptation to the different nutritional environment in these compartments.


Subject(s)
Antigens, CD/metabolism , Fusion Regulatory Protein-1/metabolism , Glucose Transporter Type 1/metabolism , Killer Cells, Natural/metabolism , Receptors, Transferrin/metabolism , Adult , Aged , Aged, 80 and over , Blood/metabolism , Cells, Cultured , Female , Humans , Liver/metabolism , Liver/surgery , Liver Transplantation , Male , Middle Aged , Spleen/metabolism , Spleen/surgery
7.
PLoS One ; 12(8): e0182532, 2017.
Article in English | MEDLINE | ID: mdl-28792982

ABSTRACT

The recruitment and retention of Natural Killer (NK) cells in the liver are thought to play an important role during hepatotropic infections and liver cirrhosis. The aims of this study were to determine differences between liver-derived and peripheral blood-derived NK cells in the context of liver inflammation and cirrhosis. We conducted a prospective dual-center cross-sectional study in patients undergoing liver transplantation or tumor-free liver resections, in which both liver tissue and peripheral blood samples were obtained from each consenting study participants. Intrahepatic lymphocytes and PBMCs were stained, fixed and analyzed by flow cytometry. Our results showed that, within cirrhotic liver samples, intrahepatic NK cells were particularly enriched for CD49a+ NK cells when compared to tumor-free liver resection samples. CD49a+ liver-derived NK cells included populations of cells expressing CD25, CD34 and CXCR3. Moreover, CD49a+CD25+ liver-derived NK cells exhibited high proliferative capacity in vitro in response to low doses of IL-2. Our study identified a specific subset of CD49a+CD25+ NK cells in cirrhotic livers bearing functional features of proliferation.


Subject(s)
Cell Proliferation/physiology , Integrin alpha1/physiology , Interleukin-2 Receptor alpha Subunit/physiology , Killer Cells, Natural/physiology , Liver/cytology , Adult , Aged , Antigens, CD34/physiology , Cross-Sectional Studies , Female , Flow Cytometry , Humans , Killer Cells, Natural/immunology , Liver/immunology , Liver/physiology , Liver Transplantation , Male , Middle Aged , Prospective Studies , Receptors, CXCR3/physiology
8.
Sci Rep ; 7(1): 6676, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751776

ABSTRACT

Immune responses show a high degree of tissue specificity shaped by factors influencing tissue egress and retention of immune cells. The transcription factor Hobit was recently shown to regulate tissue-residency in mice. Whether Hobit acts in a similar capacity in humans remains unknown. Our aim was to assess the expression and contribution of Hobit to tissue-residency of Natural Killer (NK) cells in the human liver. The human liver was enriched for CD56bright NK cells showing increased expression levels of the transcription factor Hobit. Hobitpos CD56bright NK cells in the liver exhibited high levels of CD49a, CXCR6 and CD69. Hobitpos CD56bright NK cells in the liver furthermore expressed a unique set of transcription factors with higher frequencies and levels of T-bet and Blimp-1 when compared to Hobitneg CD56bright NK cells. Taken together, we show that the transcription factor Hobit identifies a subset of NK cells in human livers that express a distinct set of adhesion molecules and chemokine receptors consistent with tissue residency. These data suggest that Hobit is involved in regulating tissue-residency of human intrahepatic CD56bright NK cells in a subset of NK cells in inflamed livers.


Subject(s)
Gene Expression Regulation , Killer Cells, Natural/metabolism , Liver/metabolism , Transcription Factors/metabolism , CD56 Antigen , Humans , Killer Cells, Natural/immunology , Receptors, Chemokine/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...