Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(7): 112775, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436892

ABSTRACT

Ionotropic glutamate receptors (GluRs) are targets for modulation in Hebbian and homeostatic synaptic plasticity and are remodeled by development, experience, and disease. We have probed the impact of synaptic glutamate levels on the two postsynaptic GluR subtypes at the Drosophila neuromuscular junction, GluRA and GluRB. We first demonstrate that GluRA and GluRB compete to establish postsynaptic receptive fields, and that proper GluR abundance and composition can be orchestrated in the absence of any synaptic glutamate release. However, excess glutamate adaptively tunes postsynaptic GluR abundance, echoing GluR scaling observed in mammalian systems. Furthermore, when GluRA vs. GluRB competition is eliminated, GluRB becomes insensitive to glutamate modulation. In contrast, GluRA is now homeostatically regulated by excess glutamate to maintain stable miniature activity, where Ca2+ permeability through GluRA receptors is required. Thus, excess glutamate, GluR competition, and Ca2+ signaling collaborate to selectively target GluR subtypes for homeostatic regulation at postsynaptic compartments.


Subject(s)
Drosophila Proteins , Synapses , Animals , Synapses/physiology , Glutamic Acid , Neuromuscular Junction/physiology , Drosophila , Neuronal Plasticity/physiology , Mammals
2.
Nat Commun ; 13(1): 7656, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496500

ABSTRACT

Presynaptic homeostatic plasticity (PHP) adaptively enhances neurotransmitter release following diminished postsynaptic glutamate receptor (GluR) functionality to maintain synaptic strength. While much is known about PHP expression mechanisms, postsynaptic induction remains enigmatic. For over 20 years, diminished postsynaptic Ca2+ influx was hypothesized to reduce CaMKII activity and enable retrograde PHP signaling at the Drosophila neuromuscular junction. Here, we have interrogated inductive signaling and find that active CaMKII colocalizes with and requires the GluRIIA receptor subunit. Next, we generated Ca2+-impermeable GluRs to reveal that both CaMKII activity and PHP induction are Ca2+-insensitive. Rather, a GluRIIA C-tail domain is necessary and sufficient to recruit active CaMKII. Finally, chimeric receptors demonstrate that the GluRIIA tail constitutively occludes retrograde homeostatic signaling by stabilizing active CaMKII. Thus, the physical loss of the GluRIIA tail is sensed, rather than reduced Ca2+, to enable retrograde PHP signaling, highlighting a unique, Ca2+-independent control mechanism for CaMKII in gating homeostatic plasticity.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Drosophila Proteins , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Presynaptic Terminals/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neuromuscular Junction/metabolism , Drosophila/metabolism , Receptors, Glutamate/metabolism
3.
Elife ; 112022 08 22.
Article in English | MEDLINE | ID: mdl-35993544

ABSTRACT

In developing and mature nervous systems, diverse neuronal subtypes innervate common targets to establish, maintain, and modify neural circuit function. A major challenge towards understanding the structural and functional architecture of neural circuits is to separate these inputs and determine their intrinsic and heterosynaptic relationships. The Drosophila larval neuromuscular junction is a powerful model system to study these questions, where two glutamatergic motor neurons, the strong phasic-like Is and weak tonic-like Ib, co-innervate individual muscle targets to coordinate locomotor behavior. However, complete neurotransmission from each input has never been electrophysiologically separated. We have employed a botulinum neurotoxin, BoNT-C, that eliminates both spontaneous and evoked neurotransmission without perturbing synaptic growth or structure, enabling the first approach that accurately isolates input-specific neurotransmission. Selective expression of BoNT-C in Is or Ib motor neurons disambiguates the functional properties of each input. Importantly, the blended values of Is+Ib neurotransmission can be fully recapitulated by isolated physiology from each input. Finally, selective silencing by BoNT-C does not induce heterosynaptic structural or functional plasticity at the convergent input. Thus, BoNT-C establishes the first approach to accurately separate neurotransmission between tonic vs. phasic neurons and defines heterosynaptic plasticity rules in a powerful model glutamatergic circuit.


Subject(s)
Botulinum Toxins , Animals , Botulinum Toxins/metabolism , Drosophila/metabolism , Motor Neurons/physiology , Neuromuscular Junction/physiology , Neuronal Plasticity/physiology , Synaptic Transmission
4.
Nat Rev Neurosci ; 22(6): 345-358, 2021 06.
Article in English | MEDLINE | ID: mdl-33837376

ABSTRACT

Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.


Subject(s)
Corpus Striatum/physiology , Dopamine/physiology , Animals , Calcium/metabolism , Dopaminergic Neurons/physiology , Glutamic Acid/metabolism , Models, Neurological , Synaptic Transmission/physiology , Time Factors , gamma-Aminobutyric Acid/metabolism
5.
Curr Biol ; 31(8): 1711-1725.e5, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33651992

ABSTRACT

As a result of developmental synapse formation, the presynaptic neurotransmitter release machinery becomes accurately matched with postsynaptic neurotransmitter receptors. Trans-synaptic signaling is executed through cell adhesion proteins such as Neurexin::Neuroligin pairs but also through diffusible and cytoplasmic signals. How exactly pre-post coordination is ensured in vivo remains largely enigmatic. Here, we identified a "molecular choreography" coordinating pre- with postsynaptic assembly during the developmental formation of Drosophila neuromuscular synapses. Two presynaptic Neurexin-binding scaffold proteins, Syd-1 and Spinophilin (Spn), spatio-temporally coordinated pre-post assembly in conjunction with two postsynaptically operating, antagonistic Neuroligin species: Nlg1 and Nlg2. The Spn/Nlg2 module promoted active zone (AZ) maturation by driving the accumulation of AZ scaffold proteins critical for synaptic vesicle release. Simultaneously, these regulators restricted postsynaptic glutamate receptor incorporation. Both functions of the Spn/Nlg2 module were directly antagonized by Syd-1/Nlg1. Nlg1 and Nlg2 also had divergent effects on Nrx-1 in vivo motility. Concerning diffusible signals, Spn and Syd-1 antagonistically controlled the levels of Munc13-family protein Unc13B at nascent AZs, whose release function facilitated glutamate receptor incorporation at assembling postsynaptic specializations. As a result, we here provide direct in vivo evidence illustrating how a highly regulative and interleaved communication between cell adhesion protein signaling complexes and diffusible signals allows for a precise coordination of pre- with postsynaptic assembly. It will be interesting to analyze whether this logic also transfers to plasticity processes.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Animals , Cell Adhesion Molecules , Drosophila , Drosophila Proteins/genetics , Receptors, Glutamate , Synapses
6.
Cell Mol Life Sci ; 78(7): 3159-3179, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33449150

ABSTRACT

Homeostatic signaling systems are fundamental forms of biological regulation that maintain stable functionality in a changing environment. In the nervous system, synapses are crucial substrates for homeostatic modulation, serving to establish, maintain, and modify the balance of excitation and inhibition. Synapses must be sufficiently flexible to enable the plasticity required for learning and memory but also endowed with the stability to last a lifetime. In response to the processes of development, growth, remodeling, aging, and disease that challenge synapses, latent forms of adaptive plasticity become activated to maintain synaptic stability. In recent years, new insights into the homeostatic control of synaptic function have been achieved using the powerful Drosophila neuromuscular junction (NMJ). This review will focus on work over the past 10 years that has illuminated the cellular and molecular mechanisms of five homeostats that operate at the fly NMJ. These homeostats adapt to loss of postsynaptic neurotransmitter receptor functionality, glutamate imbalance, axonal injury, as well as aberrant synaptic growth and target innervation. These diverse homeostats work independently yet can be simultaneously expressed to balance neurotransmission. Growing evidence from this model glutamatergic synapse suggests these ancient homeostatic signaling systems emerged early in evolution and are fundamental forms of plasticity that also function to stabilize mammalian cholinergic NMJs and glutamatergic central synapses.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , Homeostasis , Neuromuscular Junction/physiology , Neuronal Plasticity , Synapses/physiology , Synaptic Transmission , Animals , Signal Transduction
7.
Proc Natl Acad Sci U S A ; 117(41): 25830-25839, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32973097

ABSTRACT

Presynaptic glutamate receptors (GluRs) modulate neurotransmitter release and are physiological targets for regulation during various forms of plasticity. Although much is known about the auxiliary subunits associated with postsynaptic GluRs, far less is understood about presynaptic auxiliary GluR subunits and their functions. At the Drosophila neuromuscular junction, a presynaptic GluR, DKaiR1D, localizes near active zones and operates as an autoreceptor to tune baseline transmission and enhance presynaptic neurotransmitter release in response to diminished postsynaptic GluR functionality, a process referred to as presynaptic homeostatic potentiation (PHP). Here, we identify an auxiliary subunit that collaborates with DKaiR1D to promote these synaptic functions. This subunit, dSol-1, is the homolog of the Caenorhabditis elegans CUB (Complement C1r/C1s, Uegf, Bmp1) domain protein Sol-1. We find that dSol-1 functions in neurons to facilitate baseline neurotransmission and to enable PHP expression, properties shared with DKaiR1D Intriguingly, presynaptic overexpression of dSol-1 is sufficient to enhance neurotransmitter release through a DKaiR1D-dependent mechanism. Furthermore, dSol-1 is necessary to rapidly increase the abundance of DKaiR1D receptors near active zones during homeostatic signaling. Together with recent work showing the CUB domain protein Neto2 is necessary for the homeostatic modulation of postsynaptic GluRs in mammals, our data demonstrate that dSol-1 is required for the homeostatic regulation of presynaptic GluRs. Thus, we propose that CUB domain proteins are fundamental homeostatic modulators of GluRs on both sides of the synapse.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Membrane Proteins/metabolism , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Homeostasis , Membrane Proteins/genetics , Neuromuscular Junction/metabolism , Neuronal Plasticity , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Synaptic Transmission
8.
Front Cell Neurosci ; 14: 196, 2020.
Article in English | MEDLINE | ID: mdl-32676010

ABSTRACT

Neurons must establish and stabilize connections made with diverse targets, each with distinct demands and functional characteristics. At Drosophila neuromuscular junctions (NMJs), synaptic strength remains stable in a manipulation that simultaneously induces hypo-innervation on one target and hyper-innervation on the other. However, the expression mechanisms that achieve this exquisite target-specific homeostatic control remain enigmatic. Here, we identify the distinct target-specific homeostatic expression mechanisms. On the hypo-innervated target, an increase in postsynaptic glutamate receptor (GluR) abundance is sufficient to compensate for reduced innervation, without any apparent presynaptic adaptations. In contrast, a target-specific reduction in presynaptic neurotransmitter release probability is reflected by a decrease in active zone components restricted to terminals of hyper-innervated targets. Finally, loss of postsynaptic GluRs on one target induces a compartmentalized, homeostatic enhancement of presynaptic neurotransmitter release called presynaptic homeostatic potentiation (PHP) that can be precisely balanced with the adaptations required for both hypo- and hyper-innervation to maintain stable synaptic strength. Thus, distinct anterograde and retrograde signaling systems operate at pre- and post-synaptic compartments to enable target-specific, homeostatic control of neurotransmission.

9.
Development ; 147(10)2020 05 21.
Article in English | MEDLINE | ID: mdl-32345746

ABSTRACT

Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which Drosophila larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ). Although wild-type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for 35 days, during which time NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neurotransmitter release. Arrest of the larval stage in stathmin mutants also reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, an adaptive form of presynaptic depression stabilizes neurotransmission during an extended developmental period of unconstrained synaptic growth. More generally, the ATI manipulation provides a powerful system for studying neurodegeneration and plasticity across prolonged developmental timescales.


Subject(s)
Drosophila/growth & development , Drosophila/genetics , Larva/growth & development , Larva/genetics , Long-Term Synaptic Depression/genetics , Nerve Degeneration/genetics , Neuromuscular Junction/growth & development , Animals , Axons/pathology , Drosophila Proteins/genetics , Female , Homeostasis/genetics , Male , Mutation , Neuromuscular Junction/metabolism , RNA Interference , Smad Proteins, Receptor-Regulated/genetics , Stathmin/genetics , Synapses/metabolism , Synaptic Transmission/genetics
10.
Nat Commun ; 10(1): 2998, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278365

ABSTRACT

At the Drosophila neuromuscular junction, inhibition of postsynaptic glutamate receptors activates retrograde signaling that precisely increases presynaptic neurotransmitter release to restore baseline synaptic strength. However, the nature of the underlying postsynaptic induction process remains enigmatic. Here, we design a forward genetic screen to discover factors in the postsynaptic compartment necessary to generate retrograde homeostatic signaling. This approach identified insomniac (inc), a putative adaptor for the Cullin-3 (Cul3) ubiquitin ligase complex, which together with Cul3 is essential for normal sleep regulation. Interestingly, we find that Inc and Cul3 rapidly accumulate at postsynaptic compartments following acute receptor inhibition and are required for a local increase in mono-ubiquitination. Finally, we show that Peflin, a Ca2+-regulated Cul3 co-adaptor, is necessary for homeostatic communication, suggesting a relationship between Ca2+ signaling and control of Cul3/Inc activity in the postsynaptic compartment. Our study suggests that Cul3/Inc-dependent mono-ubiquitination, compartmentalized at postsynaptic densities, gates retrograde signaling and provides an intriguing molecular link between the control of sleep and homeostatic plasticity at synapses.


Subject(s)
Cullin Proteins/metabolism , Drosophila Proteins/metabolism , Postsynaptic Potential Summation/physiology , Presynaptic Terminals/metabolism , Sleep/physiology , Animals , Drosophila melanogaster , Female , Homeostasis/physiology , Male , Models, Animal , Neuromuscular Junction/metabolism , Neurotransmitter Agents/metabolism , Ubiquitination/physiology
11.
Nat Commun ; 10(1): 1085, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842428

ABSTRACT

Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying Drosophila neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.


Subject(s)
Drosophila Proteins/metabolism , Long-Term Potentiation/physiology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neuromuscular Junction/metabolism , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Female , Male , Membrane Proteins/genetics , Memory, Short-Term/physiology , Models, Animal , Mushroom Bodies/cytology , Mushroom Bodies/metabolism , Nerve Tissue Proteins/genetics , Patch-Clamp Techniques , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
12.
J Neurosci ; 39(21): 4051-4065, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30902873

ABSTRACT

Synapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. However, neural activity remains stable throughout life, implying that adaptive countermeasures exist that maintain neurotransmission within proper physiological ranges. Aberrant synaptic structure and function have been associated with a variety of neural diseases, including Fragile X syndrome, autism, and intellectual disability. We have screened 300 mutants in Drosophila larvae of both sexes for defects in synaptic growth at the neuromuscular junction, identifying 12 mutants with severe reductions or enhancements in synaptic growth. Remarkably, electrophysiological recordings revealed that synaptic strength was unchanged in all but one of these mutants compared with WT. We used a combination of genetic, anatomical, and electrophysiological analyses to illuminate three mechanisms that stabilize synaptic strength despite major disparities in synaptic growth. These include compensatory changes in (1) postsynaptic neurotransmitter receptor abundance, (2) presynaptic morphology, and (3) active zone structure. Together, this characterization identifies new mutants with defects in synaptic growth and the adaptive strategies used by synapses to homeostatically stabilize neurotransmission in response.SIGNIFICANCE STATEMENT This study reveals compensatory mechanisms used by synapses to ensure stable functionality during severe alterations in synaptic growth using the neuromuscular junction of Drosophila melanogaster as a model system. Through a forward genetic screen, we identify mutants that exhibit dramatic undergrown or overgrown synapses yet express stable levels of synaptic strength, with three specific compensatory mechanisms discovered. Thus, this study reveals novel insights into the adaptive strategies that constrain neurotransmission within narrow physiological ranges while allowing considerable flexibility in overall synapse number. More broadly, these findings provide insights into how stable synaptic function may be maintained in the nervous system during periods of intensive synaptic growth, pruning, and remodeling.


Subject(s)
Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Animals , Animals, Genetically Modified , Drosophila , Female , Male , Mutation , Neuromuscular Junction/physiology
13.
J Cell Biol ; 218(5): 1706-1724, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30914419

ABSTRACT

Synaptic terminals grow and retract throughout life, yet synaptic strength is maintained within stable physiological ranges. To study this process, we investigated Drosophila endophilin (endo) mutants. Although active zone (AZ) number is doubled in endo mutants, a compensatory reduction in their size homeostatically adjusts global neurotransmitter output to maintain synaptic strength. We find an inverse adaptation in rab3 mutants. Additional analyses using confocal, STED, and electron microscopy reveal a stoichiometric tuning of AZ scaffolds and nanoarchitecture. Axonal transport of synaptic cargo via the lysosomal kinesin adapter Arl8 regulates AZ abundance to modulate global synaptic output and sustain the homeostatic potentiation of neurotransmission. Finally, we find that this AZ scaling can interface with two independent homeostats, depression and potentiation, to remodel AZ structure and function, demonstrating a robust balancing of separate homeostatic adaptations. Thus, AZs are pliable substrates with elastic and modular nanostructures that can be dynamically sculpted to stabilize and tune both local and global synaptic strength.


Subject(s)
Axonal Transport , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Homeostasis , Neuromuscular Junction/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Drosophila Proteins/genetics , Mutation , rab3 GTP-Binding Proteins/genetics , rab3 GTP-Binding Proteins/metabolism
14.
Bio Protoc ; 9(1)2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30761328

ABSTRACT

Presynaptic boutons at nerve terminals are densely packed with synaptic vesicles, specialized organelles for rapid and regulated neurotransmitter secretion. Upon depolarization of the nerve terminal, synaptic vesicles fuse at specializations called active zones that are localized at discrete compartments in the plasma membrane to initiate synaptic transmission. A small proportion of synaptic vesicles are docked and primed for immediate fusion upon synaptic stimulation, which together comprise the readily releasable pool. The size of the readily releasable pool is an important property of synapses, which influences release probability and can dynamically change during various forms of plasticity. Here we describe a detailed protocol for estimating the readily releasable pool at a model glutamatergic synapse, the Drosophila neuromuscular junction. This synapse is experimentally robust and amenable to sophisticated genetic, imaging, electrophysiological, and pharmacological approaches. We detail the experimental design, electrophysiological recording procedure, and quantitative analysis necessary to determine the readily releasable pool size. This technique requires the use of a two-electrode voltage-clamp recording configuration in elevated external Ca2+ with high frequency stimulation. We have used this assay to measure the readily releasable pool size and reveal that a form of homeostatic plasticity modulates this pool with synapse-specific and compartmentalized precision. This powerful approach can be utilized to illuminate the dynamics of synaptic vesicle trafficking and plasticity and determine how synaptic function adapts and deteriorates during states of altered development, stress and neuromuscular disease.

15.
EMBO Rep ; 20(3)2019 03.
Article in English | MEDLINE | ID: mdl-30692130

ABSTRACT

The ubiquitin ligase Highwire restrains synaptic growth and promotes evoked neurotransmission at NMJ synapses in Drosophila Highwire regulates synaptic morphology by downregulating the MAP3K Wallenda, but excess Wallenda signaling does not account for the decreased presynaptic release observed in highwire mutants. Hence, Highwire likely has a second substrate that inhibits neurotransmission. Highwire targets the NAD+ biosynthetic and axoprotective enzyme dNmnat to regulate axonal injury responses. dNmnat localizes to synapses and interacts with the active zone protein Bruchpilot, leading us to hypothesize that Highwire promotes evoked release by downregulating dNmnat. Here, we show that excess dNmnat is necessary in highwire mutants and sufficient in wild-type larvae to reduce quantal content, likely via disruption of active zone ultrastructure. Catalytically active dNmnat is required to drive defects in evoked release, and depletion of a second NAD+ synthesizing enzyme is sufficient to suppress these defects in highwire mutants, suggesting that excess NAD+ biosynthesis is the mechanism inhibiting neurotransmission. Thus, Highwire downregulates dNmnat to promote evoked synaptic release, suggesting that Highwire balances the axoprotective and synapse-inhibitory functions of dNmnat.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/physiology , NAD/biosynthesis , Nerve Tissue Proteins/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Synaptic Transmission , Animals , Biocatalysis , Drosophila melanogaster/ultrastructure , Mutation/genetics , Neuromuscular Junction/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Probability
16.
J Neurosci ; 39(13): 2416-2429, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30692227

ABSTRACT

Neurons communicate through Ca2+-dependent neurotransmitter release at presynaptic active zones (AZs). Neurotransmitter release properties play a key role in defining information flow in circuits and are tuned during multiple forms of plasticity. Despite their central role in determining neurotransmitter release properties, little is known about how Ca2+ channel levels are modulated to calibrate synaptic function. We used CRISPR to tag the Drosophila CaV2 Ca2+ channel Cacophony (Cac) and, in males in which all Cac channels are tagged, investigated the regulation of endogenous Ca2+ channels during homeostatic plasticity. We found that heterogeneously distributed Cac is highly predictive of neurotransmitter release probability at individual AZs and differentially regulated during opposing forms of presynaptic homeostatic plasticity. Specifically, AZ Cac levels are increased during chronic and acute presynaptic homeostatic potentiation (PHP), and live imaging during acute expression of PHP reveals proportional Ca2+ channel accumulation across heterogeneous AZs. In contrast, endogenous Cac levels do not change during presynaptic homeostatic depression (PHD), implying that the reported reduction in Ca2+ influx during PHD is achieved through functional adaptions to pre-existing Ca2+ channels. Thus, distinct mechanisms bidirectionally modulate presynaptic Ca2+ levels to maintain stable synaptic strength in response to diverse challenges, with Ca2+ channel abundance providing a rapidly tunable substrate for potentiating neurotransmitter release over both acute and chronic timescales.SIGNIFICANCE STATEMENT Presynaptic Ca2+ dynamics play an important role in establishing neurotransmitter release properties. Presynaptic Ca2+ influx is modulated during multiple forms of homeostatic plasticity at Drosophila neuromuscular junctions to stabilize synaptic communication. However, it remains unclear how this dynamic regulation is achieved. We used CRISPR gene editing to endogenously tag the sole Drosophila Ca2+ channel responsible for synchronized neurotransmitter release, and found that channel abundance is regulated during homeostatic potentiation, but not homeostatic depression. Through live imaging experiments during the adaptation to acute homeostatic challenge, we visualize the accumulation of endogenous Ca2+ channels at individual active zones within 10 min. We propose that differential regulation of Ca2+ channels confers broad capacity for tuning neurotransmitter release properties to maintain neural communication.


Subject(s)
Calcium Channels/physiology , Drosophila Proteins/physiology , Neuronal Plasticity , Presynaptic Terminals/physiology , Synaptic Potentials , Animals , Drosophila/physiology , Homeostasis , Male
17.
Cell Rep ; 23(6): 1716-1727, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742428

ABSTRACT

We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ). We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment.


Subject(s)
Drosophila melanogaster/physiology , Glutamic Acid/metabolism , Homeostasis , Neural Inhibition/physiology , Neurotransmitter Agents/metabolism , Presynaptic Terminals/physiology , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Drosophila Proteins/metabolism , Long-Term Potentiation , Mutation/genetics , Neuromuscular Junction/physiology , Receptors, Glutamate/metabolism , Synaptic Vesicles/metabolism
18.
Nat Commun ; 9(1): 1856, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29748610

ABSTRACT

Synapses are constructed with the stability to last a lifetime, yet sufficiently flexible to adapt during injury. Although fundamental pathways that mediate intrinsic responses to neuronal injury have been defined, less is known about how synaptic partners adapt. We have investigated responses in the postsynaptic cell to presynaptic activation of the injury-related Dual Leucine Zipper Kinase pathway at the Drosophila neuromuscular junction. We find that the postsynaptic compartment reduces neurotransmitter receptor levels, thus depressing synaptic strength. Interestingly, this diminished state is stabilized through distinct modulations to two postsynaptic homeostatic signaling systems. First, a retrograde response normally triggered by reduced receptor levels is silenced, preventing a compensatory enhancement in presynaptic neurotransmitter release. However, when global presynaptic release is attenuated, a postsynaptic receptor scaling mechanism persists to adaptively stabilize this diminished neurotransmission state. Thus, the homeostatic set point of synaptic strength is recalibrated to a reduced state as synapses acclimate to injury.


Subject(s)
Drosophila/physiology , MAP Kinase Kinase Kinases/metabolism , Neuromuscular Junction/metabolism , Presynaptic Terminals/metabolism , Synaptic Potentials/physiology , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , MAP Kinase Kinase Kinases/genetics , Neuromuscular Junction/cytology , Neuronal Plasticity/physiology , Neurons/physiology , Neurotransmitter Agents/metabolism , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Signal Transduction/physiology
19.
Elife ; 72018 04 05.
Article in English | MEDLINE | ID: mdl-29620520

ABSTRACT

Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments.


Subject(s)
Drosophila melanogaster/physiology , Excitatory Postsynaptic Potentials , Homeostasis , Neuromuscular Junction/physiology , Presynaptic Terminals/physiology , Synapses/physiology , Animals , Drosophila Proteins/metabolism , Receptors, Ionotropic Glutamate/metabolism , Synaptic Transmission
20.
Cell Rep ; 21(9): 2339-2347, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29186673

ABSTRACT

Retrograde signaling systems are fundamental modes of communication synapses utilize to dynamically and adaptively modulate activity. However, the inductive mechanisms that gate retrograde communication in the postsynaptic compartment remain enigmatic. We have investigated retrograde signaling at the Drosophila neuromuscular junction, where three seemingly disparate perturbations to the postsynaptic cell trigger a similar enhancement in presynaptic neurotransmitter release. We show that the same presynaptic genetic machinery and enhancements in active zone structure are utilized by each inductive pathway. However, all three induction mechanisms differ in temporal, translational, and CamKII activity requirements to initiate retrograde signaling in the postsynaptic cell. Intriguingly, pharmacological blockade of postsynaptic glutamate receptors, and not calcium influx through these receptors, is necessary and sufficient to induce rapid retrograde homeostatic signaling through CamKII. Thus, three distinct induction mechanisms converge on the same retrograde signaling system to drive the homeostatic strengthening of presynaptic neurotransmitter release.


Subject(s)
Drosophila Proteins/metabolism , Presynaptic Terminals/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Drosophila , Excitatory Postsynaptic Potentials/physiology , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiology , Neuronal Plasticity/physiology , Receptors, Glutamate/metabolism , Signal Transduction/physiology , Synapses/metabolism , Synapses/physiology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL