Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
2.
EBioMedicine ; 101: 105003, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340557

ABSTRACT

BACKGROUND: Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS: Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS: Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTßR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTßR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTßR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION: This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING: This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Tertiary Lymphoid Structures , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Fibronectins , Immune Checkpoint Inhibitors , Microfilament Proteins/metabolism , Cell Line, Tumor , Protein Isoforms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Tumor Microenvironment
4.
J Exp Clin Cancer Res ; 42(1): 287, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898752

ABSTRACT

BACKGROUND: Immune checkpoint blockade (ICB) has significantly prolonged survival of non-small cell lung cancer (NSCLC) patients, although most patients develop mechanisms of resistance. Recently single-cell RNA-sequencing (scRNA-Seq) revealed a huge T-cell phenotypic and (dys)functional state variability. Accordingly, T-cell exhaustion is recognized as a functional adaptation, with a dynamic progression from a long-lived "pre-exhausted stem-like progenitor" to a "terminally exhausted" state. In this scenario it is crucial to understand the complex interplay between co-stimulatory and inhibitory molecules in CD8+ T-cell functionality. METHODS: To gain a baseline landscape of the composition, functional states, and transcriptomic signatures predictive of prognosis, we analyzed CD8+ T-cell subsets characterized by the presence/absence of PD1 and CD28 from periphery, adjacent non-tumor tissue and tumor site of a cohort of treatment-naïve NSCLC patients, by integrated multiparametric flow cytometry, targeted multi-omic scRNA-seq analyses, and computational pipelines. RESULTS: Despite the increased PD1 levels, an improved PD1+CD28+ T-cell polyfunctionality was observed with the transition from periphery to tumor site, associated with lack of TIGIT, TIM-3 and LAG-3, but not with Ag-experienced-marker CD11a. Differently from CD28+ T cells, the increased PD1 levels in the tumor were associated with reduced functionality in PD1+CD28- T cells. CD11ahigh, although expressed only in a small fraction of this subset, still sustained its functionality. Absence of TIGIT, TIM-3 and CTLA-4, alone or combined, was beneficial to CD28- T cells. Notably, we observed distinct TRM phenotypes in the different districts, with CD28+ T cells more capable of producing TGFß in the periphery, potentially contributing to elevated CD103 levels. In contrast CD28- TRM mainly produced CXCL13 within the tumor. ScRNA-seq revealed 5 different clusters for each of the two subsets, with distinctive transcriptional profiles in the three districts. By interrogating the TCGA dataset of patients with lung adenocarcinoma (LUAD) and metastatic NSCLC treated with atezolizumab, we found signatures of heterogeneous TRM and "pre-exhausted" long-lived effector memory CD8+ T cells associated with improved response to ICB only in the presence of CD28. CONCLUSIONS: Our findings identify signatures able to stratify survival of LUAD patients and predict ICB response in advanced NSCLC. CD28 is advocated as a key determinant in the signatures identified, in both periphery and tumor site, thus likely providing feasible biomarkers of ICB response.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , CD8-Positive T-Lymphocytes , CD28 Antigens/genetics , CD28 Antigens/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Hepatitis A Virus Cellular Receptor 2/genetics , Lung Neoplasms/pathology , Adenocarcinoma of Lung/pathology
5.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37612043

ABSTRACT

BACKGROUND: Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation. METHODS: Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort. RESULTS: Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNß via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy. CONCLUSIONS: Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Interferon Type I , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Isoforms
6.
Cell Death Dis ; 14(8): 535, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598177

ABSTRACT

Hyperthermic intraperitoneal administration of chemotherapy (HIPEC) increases local drug concentrations and reduces systemic side effects associated with prolonged adjuvant intraperitoneal exposure in patients affected by either peritoneal malignancies or metastatic diseases originating from gastric, colon, kidney, and ovarian primary tumors. Mechanistically, the anticancer effects of HIPEC have been poorly explored. Herein we documented that HIPEC treatment promoted miR-145-5p expression paired with a significant downregulation of its oncogenic target genes c-MYC, EGFR, OCT4, and MUC1 in a pilot cohort of patients with ovarian peritoneal metastatic lesions. RNA sequencing analyses of ovarian peritoneal metastatic nodules from HIPEC treated patients unveils HSF-1 as a transcriptional regulator factor of miR-145-5p expression. Notably, either depletion of HSF-1 expression or chemical inhibition of its transcriptional activity impaired miR-145-5p tumor suppressor activity and the response to cisplatin in ovarian cancer cell lines incubated at 42 °C. In aggregate, our findings highlight a novel transcriptional network involving HSF-1, miR145-5p, MYC, EGFR, MUC1, and OCT4 whose proper activity contributes to HIPEC anticancer efficacy in the treatment of ovarian metastatic peritoneal lesions.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Hyperthermic Intraperitoneal Chemotherapy , Genes, myc , Heat Shock Transcription Factors/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Transcription Factors/genetics , Cell Line , ErbB Receptors , MicroRNAs/genetics
7.
J Exp Clin Cancer Res ; 42(1): 170, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37460938

ABSTRACT

BACKGROUND: Approximately 20-50% of patients presenting with localized colorectal cancer progress to stage IV metastatic disease (mCRC) following initial treatment and this is a major prognostic determinant. Here, we have interrogated a heterogeneous set of primary colorectal cancer (CRC), liver CRC metastases and adjacent liver tissue to identify molecular determinants of the colon to liver spreading. Screening Food and Drug Administration (FDA) approved drugs for their ability to interfere with an identified colon to liver metastasis signature may help filling an unmet therapeutic need. METHODS: RNA sequencing of primary colorectal cancer specimens vs adjacent liver tissue vs synchronous and asynchronous liver metastases. Pathways enrichment analyses. The Library of Integrated Network-based Cellular Signatures (LINCS)-based and Connectivity Map (CMAP)-mediated identification of FDA-approved compounds capable to interfere with a 22 gene signature from primary CRC and liver metastases. Testing the identified compounds on CRC-Patient Derived Organoid (PDO) cultures. Microscopy and Fluorescence Activated Cell Sorting (FACS) based analysis of the treated PDOs. RESULTS: We have found that liver metastases acquire features of the adjacent liver tissue while partially losing those of the primary tumors they derived from. We have identified a 22-gene signature differentially expressed among primary tumors and metastases and validated in public databases. A pharmacogenomic screening for FDA-approved compounds capable of interfering with this signature has been performed. We have validated some of the identified representative compounds in CRC-Patient Derived Organoid cultures (PDOs) and found that pentoxyfilline and, to a minor extent, dexketoprofen and desloratadine, can variably interfere with number, size and viability of the CRC -PDOs in a patient-specific way. We explored the pentoxifylline mechanism of action and found that pentoxifylline treatment attenuated the 5-FU elicited increase of ALDHhigh cells by attenuating the IL-6 mediated STAT3 (tyr705) phosphorylation. CONCLUSIONS: Pentoxifylline synergizes with 5-Fluorouracil (5-FU) in attenuating organoid formation. It does so by interfering with an IL-6-STAT3 axis leading to the emergence of chemoresistant ALDHhigh cell subpopulations in 5-FU treated PDOs. A larger cohort of CRC-PDOs will be required to validate and expand on the findings of this proof-of-concept study.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Pentoxifylline , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Interleukin-6 , Pentoxifylline/therapeutic use , Fluorouracil/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Organoids
8.
J Exp Clin Cancer Res ; 42(1): 66, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932446

ABSTRACT

BACKGROUND: Altered microRNA profiles have been observed not only in tumour tissues but also in biofluids, where they circulate in a stable form thus representing interesting biomarker candidates. This study aimed to identify a microRNA signature as a non-invasive biomarker and to investigate its impact on glioma biology. METHODS: MicroRNAs were selected using a global expression profile in preoperative serum samples from 37 glioma patients. Comparison between serum samples from age and gender-matched controls was performed by using the droplet digital PCR. The ROC curve and Kaplan-Meier survival analyses were used to evaluate the diagnostic/prognostic values. The functional role of the identified signature was assessed by gain/loss of function strategies in glioma cells. RESULTS: A three-microRNA signature (miR-1-3p/-26a-1-3p/-487b-3p) was differentially expressed in the serum of patients according to the isocitrate dehydrogenase (IDH) genes mutation status and correlated with both patient Overall and Progression Free Survival. The identified signature was also downregulated in the serum of patients compared to controls. Consistent with these results, the signature expression and release in the conditioned medium of glioma cells was lower in IDH-wild type cells compared to the mutated counterpart. Furthermore, in silico analysis of glioma datasets showed a consistent deregulation of the signature according to the IDH mutation status in glioma tumour tissues. Ectopic expression of the signature negatively affects several glioma functions. Notably, it impacts the glioma invasive phenotype by directly targeting the invadopodia-related proteins TKS4, TKS5 and EFHD2. CONCLUSIONS: We identified a three microRNA signature as a promising complementary or even an independent non-invasive diagnostic/prognostic biomarker. The signature displays oncosuppressive functions in glioma cells and impacts on proteins crucial for migration and invasion, providing potential targets for therapeutic intervention.


Subject(s)
Brain Neoplasms , Circulating MicroRNA , Glioma , MicroRNAs , Humans , Brain Neoplasms/pathology , Biomarkers, Tumor/genetics , Glioma/pathology , MicroRNAs/genetics , Prognosis , Isocitrate Dehydrogenase/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Calcium-Binding Proteins
9.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498861

ABSTRACT

New evidence on the impact of dysregulation of the CDK4/6 pathway on breast cancer (BC) cell proliferation has led to the development of selective CDK4/6 inhibitors, which have radically changed the management of advanced BC. Despite the improved outcomes obtained by CDK4/6 inhibitors, approximately 10% of tumors show primary resistance, whereas acquired resistance appears to be an almost ubiquitous occurrence, leading to treatment failure. The identification of differentially expressed genes or genomic mutational signatures able to predict sensitivity or resistance to CDK4/6 inhibitors is critical for medical decision making and for avoiding or counteracting primary or acquired resistance against CDK4/6 inhibitors. In this review, we summarize the main mechanisms of resistance to CDK4/6 inhibitors, focusing on those associated with potentially relevant biomarkers that could predict patients' response/resistance to treatment. Recent advances in biomarker identification are discussed, including the potential use of liquid biopsy for BC management and the role of multiple microRNAs as molecular predictors of cancer cell sensitivity and resistance to CDK4/6 inhibitors.


Subject(s)
Breast Neoplasms , MicroRNAs , Protein Kinase Inhibitors , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Liquid Biopsy , MicroRNAs/genetics , MicroRNAs/therapeutic use , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Purines/pharmacology
10.
J Transl Med ; 20(1): 311, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794567

ABSTRACT

Acute Myeloid Leukaemia (AML) is a haematological malignancy showing a hypervariable landscape of clinical outcomes and phenotypic differences, explainable by heterogeneity at the cellular and molecular level. Among the most common genomic alterations, CBFB-MYH11 rearrangement and FLT3-ITD gene mutations, have opposite clinical significance and are unfrequently associated. We present here a Molecular Case Report in which these two events co-exist an ultra-aggressive phenotype resulting in death in 4 days from hospital admittance. Somatic and germline Whole Exome Sequencing analysis was performed to uncover other putative driver mutations, de-novo genomic structural events or germline clusters increasing cancer insurgence. Only three mutations in LTK, BCAS2 and LGAS9 were found, unlikely causative of the exhibited phenotype, prompting to additional investigation of the rare CBFB-MYH11/ FLT3-ITD scenario.


Subject(s)
Leukemia, Myeloid, Acute , Core Binding Factor beta Subunit/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Myosin Heavy Chains/genetics , Phenotype , fms-Like Tyrosine Kinase 3/genetics
11.
Methods Mol Biol ; 2535: 171-185, 2022.
Article in English | MEDLINE | ID: mdl-35867231

ABSTRACT

The transcription of each gene is tightly regulated by elements like promoters, enhancers, silencers and insulators. These elements determine the temporal and tissue-specific expression in development and disease. Drug resistance is the major obstacle in successfully treating cancer patients. In the recent years, it became evident that epigenetic changes represent one of the mechanisms that contribute to the onset and progression of cancer but also to the development of therapy resistance. The assay for transposase-accessible chromatin coupled with next generation sequencing (ATAC-seq) is a fast and easy technique to track epigenetic changes that result in different opening of the chromatin in regulatory regions genome-wide. The transposase cuts DNA in regions that are open and therefore accessible for transcription factors, regulatory RNAs and proteins that alter the architectural structure of the DNA and drive or inhibit transcription through the RNA polymerase. Here we describe a detailed protocol to perform an ATAC-seq of cells from culture or tissue.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Epigenome , Chromatin/genetics , DNA , Drug Resistance , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/methods , Transposases/metabolism
13.
Commun Biol ; 5(1): 598, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710947

ABSTRACT

Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , MicroRNAs/genetics , Protein Isoforms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
14.
Comput Struct Biotechnol J ; 20: 2558-2563, 2022.
Article in English | MEDLINE | ID: mdl-35611117

ABSTRACT

The SARS-CoV-2 Variants of Concern tracking via Whole Genome Sequencing represents a pillar of public health measures for the containment of the pandemic. The ability to track down the lineage distribution on a local and global scale leads to a better understanding of immune escape and to adopting interventions to contain novel outbreaks. This scenario poses a challenge for NGS laboratories worldwide that are pressed to have both a faster turnaround time and a high-throughput processing of swabs for sequencing and analysis. In this study, we present an optimization of the Illumina COVID-seq protocol carried out on thousands of SARS-CoV-2 samples at the wet and dry level. We discuss the unique challenges related to processing hundreds of swabs per week such as the tradeoff between ultra-high sensitivity and negative contamination levels, cost efficiency and bioinformatics quality metrics.

15.
J Exp Clin Cancer Res ; 41(1): 151, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449078

ABSTRACT

BACKGROUND: Cancer mortality is mainly caused by organ failure and thrombotic events. It has been demonstrated that NETosis, a chromatin release mechanism implemented by neutrophils, may contribute to these lethal systemic effects. Our aim was to investigate NETosis biomarkers in endometrial cancer (EC). METHODS: The experiments were conducted on 21 healthy subjects (HS) with no gynecological conditions, and on 63 EC patients. To assess the presence of NETosis features, IHC and IF was performed using antibodies against citrullinated histone H3 (citH3), neutrophil elastase (NE) and histone 2B. Serum levels of cell free DNA (cfDNA), cell free mitochondrial DNA (cfmtDNA) and citH3 were measured by qPCR using one microliter of deactivated serum, and by ELISA assay respectively. Fragmentation pattern of serum cfDNA was analyzed using the Agilent 2100 Bioanalyzer and High Sensitivity DNA Chips. Receiver operating characteristic (ROC) analysis was used to identify a cut off for cfDNA and cfmtDNA values able to discriminate between ECs and HSs. Correlation analysis and multiple correspondence analysis (MCA) between cfDNA, mtcfDNA, citH3 and blood parameters were used to identify the potential association among serum parameters in EC grades. RESULTS: We demonstrated the presence of NETosis features in tissues from all EC grades. Serum cfDNA and cfmtDNA levels discriminate ECs from HSs and a direct correlation between citH3 and cfDNA content and an inverse correlation between cfmtDNA and citH3 in EC sera was observed, not detectable in HSs. MCA indicates cfDNA, cfmtDNA and citH3 as features associated to G1 and G2 grades. A correlation between increased levels of cfDNA, citH3 and inflammation features was found. Finally, serum nucleosomal cfDNA fragmentation pattern varies in EC sera and correlates with increased levels of cfDNA, citH3, lymphocytes and fibrinogen. CONCLUSION: Our data highlight the occurrence of NETosis in EC and indicate serum cfDNA and citH3 as noninvasive biomarkers of tumor-induced systemic effects in endometrial cancer.


Subject(s)
Cell-Free Nucleic Acids , Endometrial Neoplasms , Extracellular Traps , Biomarkers , Cell-Free Nucleic Acids/pharmacology , Endometrial Neoplasms/genetics , Extracellular Traps/genetics , Female , Histones , Humans , Neutrophils
16.
Cell Death Dis ; 12(11): 1019, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716309

ABSTRACT

Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19 present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13, IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK), and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an increased gene expression linked to Interferon α, γ, α/ß response and signaling which paired with aberrant cell cycle regulation in cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in PBMCs of COVID-19 cancer patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Cytokines/blood , Leukocytes, Mononuclear/immunology , Neoplasms/immunology , COVID-19/pathology , Case-Control Studies , Female , Humans , Leukocytes, Mononuclear/cytology , Male , Neoplasms/pathology
17.
J Thorac Oncol ; 16(12): 2065-2077, 2021 12.
Article in English | MEDLINE | ID: mdl-34450259

ABSTRACT

INTRODUCTION: The connection between driver mutations and the efficacy of immune checkpoint inhibitors is the focus of intense investigations. In lung adenocarcinoma (LUAD), KEAP1/STK11 alterations have been tied to immunoresistance. Nevertheless, the heterogeneity characterizing immunotherapy efficacy suggests the contribution of still unappreciated events. METHODS: Somatic interaction analysis of top-ranking mutant genes in LUAD was carried out in the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) (N = 6208). Mutational processes, intratumor heterogeneity, evolutionary trajectories, immunologic features, and cancer-associated signatures were investigated, exploiting multiple data sets (AACR GENIE, The Cancer Genome Atlas [TCGA], TRAcking Cancer Evolution through therapy [Rx]). The impact of the proposed subtyping on survival outcomes was assessed in two independent cohorts of immune checkpoint inhibitor-treated patients: the tissue-based sequencing cohort (Rome/Memorial Sloan Kettering Cancer Center/Dana-Farber Cancer Institute, tissue-based next-generation sequencing [NGS] cohort, N = 343) and the blood-based sequencing cohort (OAK/POPLAR trials, blood-based NGS cohort, N = 304). RESULTS: Observing the neutral interaction between KEAP1 and TP53, KEAP1/TP53-based subtypes were dissected at the molecular and clinical levels. KEAP1 single-mutant (KEAP1 SM) and KEAP1/TP53 double-mutant (KEAP1/TP53 DM) LUAD share a transcriptomic profile characterized by the overexpression of AKR genes, which are under the control of a productive superenhancer with NEF2L2-binding signals. Nevertheless, KEAP1 SM and KEAP1/TP53 DM tumors differ by mutational repertoire, degree of intratumor heterogeneity, evolutionary trajectories, pathway-level signatures, and immune microenvironment composition. In both cohorts (blood-based NGS and tissue-based NGS), KEAP1 SM tumors had the shortest survival; the KEAP1/TP53 DM subgroup had an intermediate prognosis matching that of pure TP53 LUAD, whereas the longest survival was noticed in the double wild-type group. CONCLUSIONS: Our data provide a framework for genomically-informed immunotherapy, highlighting the importance of multimodal data integration to achieve a clinically exploitable taxonomy.


Subject(s)
Adenocarcinoma of Lung , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , Tumor Suppressor Protein p53 , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Genomics , Humans , Immunotherapy , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Mutation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics
18.
Cell Death Differ ; 28(7): 2060-2082, 2021 07.
Article in English | MEDLINE | ID: mdl-33531658

ABSTRACT

Cancer stem cells (CSCs) are tumor subpopulations driving disease development, progression, relapse and therapy resistance, and their targeting ensures tumor eradication. CSCs display heterogeneous replication stress (RS), but the functionality/relevance of the RS response (RSR) centered on the ATR-CHK1 axis is debated. Here, we show that the RSR is efficient in primary CSCs from colorectal cancer (CRC-SCs), and describe unique roles for PARP1 and MRE11/RAD51. First, we demonstrated that PARP1 is upregulated in CRC-SCs resistant to several replication poisons and RSR inhibitors (RSRi). In these cells, PARP1 modulates replication fork speed resulting in low constitutive RS. Second, we showed that MRE11 and RAD51 cooperate in the genoprotection and mitosis execution of PARP1-upregulated CRC-SCs. These roles represent therapeutic vulnerabilities for CSCs. Indeed, PARP1i sensitized CRC-SCs to ATRi/CHK1i, inducing replication catastrophe, and prevented the development of resistance to CHK1i. Also, MRE11i + RAD51i selectively killed PARP1-upregulated CRC-SCs via mitotic catastrophe. These results provide the rationale for biomarker-driven clinical trials in CRC using distinct RSRi combinations.


Subject(s)
Colorectal Neoplasms/drug therapy , MRE11 Homologue Protein/drug effects , Mitosis/drug effects , Neoplastic Stem Cells/drug effects , Poly (ADP-Ribose) Polymerase-1/drug effects , Rad51 Recombinase/drug effects , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , DNA Replication/drug effects , Humans , MRE11 Homologue Protein/genetics , Neoplastic Stem Cells/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Rad51 Recombinase/genetics
20.
Blood Adv ; 4(22): 5616-5630, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33186461

ABSTRACT

Multiple myeloma (MM) is a hematologic malignancy produced by a clonal expansion of plasma cells and characterized by abnormal production and secretion of monoclonal antibodies. This pathology exhibits an enormous heterogeneity resulting not only from genetic alterations but also from several epigenetic dysregulations. Here we provide evidence that Che-1/AATF (Che-1), an interactor of RNA polymerase II, promotes MM proliferation by affecting chromatin structure and sustaining global gene expression. We found that Che-1 depletion leads to a reduction of "active chromatin" by inducing a global decrease of histone acetylation. In this context, Che-1 directly interacts with histones and displaces histone deacetylase class I members from them. Strikingly, transgenic mice expressing human Che-1 in plasma cells develop MM with clinical features resembling those observed in the human disease. Finally, Che-1 downregulation decreases BRD4 chromatin accumulation to further sensitize MM cells to bromodomain and external domain inhibitors. These findings identify Che-1 as a promising target for MM therapy, alone or in combination with bromodomain and external domain inhibitors.


Subject(s)
Multiple Myeloma , Nuclear Proteins , Cell Proliferation , Chromatin , Humans , Multiple Myeloma/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...