Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Neurology ; 102(5): e208112, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38335499

ABSTRACT

BACKGROUND AND OBJECTIVES: Vamorolone is a dissociative agonist of the glucocorticoid receptor that has shown similar efficacy and reduced safety concerns in comparison with prednisone in Duchenne muscular dystrophy (DMD). This study was conducted to determine the efficacy and safety of vamorolone over 48 weeks and to study crossover participants (prednisone to vamorolone; placebo to vamorolone). METHODS: A randomized, double-blind, placebo-controlled and prednisone-controlled clinical trial of 2 doses of vamorolone was conducted in participants with DMD, in the ages from 4 years to younger than 7 years at baseline. The interventions were 2 mg/kg/d of vamorolone and 6 mg/kg/d of vamorolone for 48 weeks (period 1: 24 weeks + period 2: 24 weeks) and 0.75 mg/kg/d of prednisone and placebo for the first 24 weeks (before crossover). Efficacy was evaluated through gross motor outcomes and safety through adverse events, growth velocity, body mass index (BMI), and bone turnover biomarkers. This analysis focused on period 2. RESULTS: A total of 121 participants with DMD were randomized. Vamorolone at a dose of 6 mg/kg/d showed maintenance of improvement for all motor outcomes to week 48 (e.g., for primary outcome, time to stand from supine [TTSTAND] velocity, week 24 least squares mean [LSM] [SE] 0.052 [0.0130] rises/s vs week 48 LSM [SE] 0.0446 [0.0138]). After 48 weeks, vamorolone at a dose of 2 mg/kg/d showed similar improvements as 6 mg/kg/d for North Star Ambulatory Assessment (NSAA) (vamorolone 6 mg/kg/d-vamorolone 2 mg/kg/d LSM [SE] 0.49 [1.14]; 95% CI -1.80 to 2.78, p = 0.67), but less improvement for other motor outcomes. The placebo to vamorolone 6 mg/kg/d group showed rapid improvements after 20 weeks of treatment approaching benefit seen with 48-week 6 mg/kg/d of vamorolone treatment for TTSTAND, time to run/walk 10 m, and NSAA. There was significant improvement in linear growth after crossover in the prednisone to vamorolone 6 mg/kg/d group, and rapid reversal of prednisone-induced decline in bone turnover biomarkers in both crossover groups. There was an increase in BMI after 24 weeks of treatment that then stabilized for both vamorolone groups. DISCUSSION: Improvements of motor outcomes seen with 6 mg/kg/d of vamorolone at 24 weeks of treatment were maintained to 48 weeks of treatment. Vamorolone at a dose of 6 mg/kg/d showed better maintenance of effect compared with vamorolone at a dose of 2 mg/kg/d for most (3/5) motor outcomes. Bone morbidities of prednisone (stunting of growth and declines in serum bone biomarkers) were reversed when treatment transitioned to vamorolone. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT03439670. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for boys with DMD, the efficacy of vamorolone at a dose of 6 mg/kg/d was maintained over 48 weeks.


Subject(s)
Muscular Dystrophy, Duchenne , Pregnadienediols , Humans , Male , Biomarkers , Muscular Dystrophy, Duchenne/drug therapy , Prednisone/adverse effects , Pregnadienediols/adverse effects , Child, Preschool , Child
2.
PLoS One ; 11(9): e0161955, 2016.
Article in English | MEDLINE | ID: mdl-27588424

ABSTRACT

BACKGROUND: Drisapersen induces exon 51 skipping during dystrophin pre-mRNA splicing and allows synthesis of partially functional dystrophin in Duchenne muscular dystrophy (DMD) patients with amenable mutations. METHODS: This 188-week open-label extension of the dose-escalation study assessed the long-term efficacy, safety, and pharmacokinetics of drisapersen (PRO051/GSK2402968), 6 mg/kg subcutaneously, in 12 DMD subjects. Dosing was once weekly for 72 weeks. All subjects had a planned treatment interruption (weeks 73-80), followed by intermittent dosing (weeks 81-188). RESULTS: Subjects received a median (range) total dose of 5.93 (5.10 to 6.02) mg/kg drisapersen. After 177 weeks (last efficacy assessment), median (mean [SD]) six-minute walk distance (6MWD) improved by 8 (-24.5 [161]) meters for the 10 subjects able to complete the 6MWD at baseline (mean age [SD]: 9.5 [1.9] years). These statistics include 2 subjects unable to complete the test at later visits and who scored "zero". When only the 8 ambulant subjects at week 177 were taken into account, a median (mean [SD]) increase of 64 (33 [121]) meters in 6MWD was observed. Of 7 subjects walking ≥330 m at extension baseline, 5 walked farther at week 177. Of 3 subjects walking <330 m, 2 lost ambulation, while 1 declined overall but walked farther at some visits. Over the 188 weeks, the most common adverse events were injection-site reactions, raised urinary α1-microglobulin and proteinuria. Dystrophin expression was detected in all muscle biopsies obtained at week 68 or 72. CONCLUSION: Drisapersen was generally well tolerated over 188 weeks. Possible renal effects, thrombocytopenia and injection-site reactions warrant continued monitoring. Improvements in the 6MWD at 12 weeks were sustained after 3.4 years of dosing for most patients. For a small, uncontrolled study, the outcomes are encouraging, as natural history studies would anticipate a decline of over 100 meters over a 3-year period in a comparable cohort. TRIAL REGISTRATION: ClinicalTrials.gov NCT01910649.


Subject(s)
Muscular Dystrophy, Duchenne/drug therapy , Oligonucleotides/therapeutic use , Adolescent , Child , Child, Preschool , Dystrophin/genetics , Dystrophin/metabolism , Exercise Test , Humans , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Oligonucleotides/adverse effects , Oligonucleotides/pharmacokinetics , Treatment Outcome , Walking/physiology
3.
J Child Neurol ; 27(1): 30-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21765150

ABSTRACT

The aim of this study was to investigate the alteration of the gait pattern in 25 children with Duchenne muscular dystrophy, using body-worn inertial sensors during a long walking distance. Normalized spatiotemporal gait parameters and their variability were extracted from the angular velocity of the shanks; the smoothness of the trunk movement was assessed based on the spectral entropy of the acceleration norm. As compared to healthy children, patients with Duchenne muscular dystrophy showed significantly lower stride velocity and a less smooth trunk movement. When the group of patients was divided into mild and moderate based on the Motor Function Measure, the authors noticed significantly higher values both for cadence and stride velocity, as well as improved trunk smoothness in the mild versus moderate group. The potential of such parameters to distinguish between different disease states opens new perspectives for the objective assessment of efficacy of the new therapies associated with Duchenne muscular dystrophy.


Subject(s)
Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Muscular Dystrophy, Duchenne/complications , Walking/physiology , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Severity of Illness Index , Spectrum Analysis , Statistics, Nonparametric
4.
N Engl J Med ; 364(16): 1513-22, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21428760

ABSTRACT

BACKGROUND: Local intramuscular administration of the antisense oligonucleotide PRO051 in patients with Duchenne's muscular dystrophy with relevant mutations was previously reported to induce the skipping of exon 51 during pre-messenger RNA splicing of the dystrophin gene and to facilitate new dystrophin expression in muscle-fiber membranes. The present phase 1-2a study aimed to assess the safety, pharmacokinetics, and molecular and clinical effects of systemically administered PRO051. METHODS: We administered weekly abdominal subcutaneous injections of PRO051 for 5 weeks in 12 patients, with each of four possible doses (0.5, 2.0, 4.0, and 6.0 mg per kilogram of body weight) given to 3 patients. Changes in RNA splicing and protein levels in the tibialis anterior muscle were assessed at two time points. All patients subsequently entered a 12-week open-label extension phase, during which they all received PRO051 at a dose of 6.0 mg per kilogram per week. Safety, pharmacokinetics, serum creatine kinase levels, and muscle strength and function were assessed. RESULTS: The most common adverse events were irritation at the administration site and, during the extension phase, mild and variable proteinuria and increased urinary α(1)-microglobulin levels; there were no serious adverse events. The mean terminal half-life of PRO051 in the circulation was 29 days. PRO051 induced detectable, specific exon-51 skipping at doses of 2.0 mg or more per kilogram. New dystrophin expression was observed between approximately 60% and 100% of muscle fibers in 10 of the 12 patients, as measured on post-treatment biopsy, which increased in a dose-dependent manner to up to 15.6% of the expression in healthy muscle. After the 12-week extension phase, there was a mean (±SD) improvement of 35.2±28.7 m (from the baseline of 384±121 m) on the 6-minute walk test. CONCLUSIONS: Systemically administered PRO051 showed dose-dependent molecular efficacy in patients with Duchenne's muscular dystrophy, with a modest improvement in the 6-minute walk test after 12 weeks of extended treatment. (Funded by Prosensa Therapeutics; Netherlands National Trial Register number, NTR1241.).


Subject(s)
Alternative Splicing , Muscular Dystrophy, Duchenne/drug therapy , Oligonucleotides/therapeutic use , Adolescent , Child , Child, Preschool , Creatine Kinase/urine , Dose-Response Relationship, Drug , Dystrophin/genetics , Dystrophin/metabolism , Exercise Test , Exons , Humans , Injections, Subcutaneous , Male , Muscle Strength/drug effects , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Mutation , Oligonucleotides/administration & dosage , Oligonucleotides/adverse effects , Oligonucleotides/blood , RNA/analysis
5.
Muscle Nerve ; 38(3): 1184-91, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18720506

ABSTRACT

Ullrich disease (congenital muscular dystrophy type Ullrich, UCMD) is a severe congenital disorder of muscle caused by recessive and dominant mutations in the three genes that encode the alpha-chains of collagen type VI. Little is known about the early pathogenesis of this myopathy. The aim of this study was to investigate early histological changes in muscle of patients with molecularly confirmed UCMD. Muscle biopsies were analyzed from 8 UCMD patients ranging in age from 6 to 30 months. Type I fiber atrophy and predominance were seen early, together with a widening of the fiber diameter spectrum, whereas no dystrophic features were apparent. A subpopulation of more severely atrophic type I fibers was apparent subsequently, including one biopsy that fulfilled the formal diagnostic criteria of histopathological fiber type disproportion (FTD). Thus, early in the disease, UCMD presents as a non-dystrophic myopathy with predominant fiber atrophy. Collagen VI mutations also qualify as a cause of fiber type disproportion.


Subject(s)
Muscle Fibers, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Myotonic Dystrophy/complications , Adenosine Triphosphatases/metabolism , Biopsy/methods , Child, Preschool , Collagen Type VI/metabolism , Female , Humans , Indoles , Infant , Laminin/metabolism , Male , Muscle Fibers, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Myotonic Dystrophy/pathology
6.
N Engl J Med ; 357(26): 2677-86, 2007 Dec 27.
Article in English | MEDLINE | ID: mdl-18160687

ABSTRACT

BACKGROUND: Duchenne's muscular dystrophy is associated with severe, progressive muscle weakness and typically leads to death between the ages of 20 and 35 years. By inducing specific exon skipping during messenger RNA (mRNA) splicing, antisense compounds were recently shown to correct the open reading frame of the DMD gene and thus to restore dystrophin expression in vitro and in animal models in vivo. We explored the safety, adverse-event profile, and local dystrophin-restoring effect of a single, intramuscular dose of an antisense oligonucleotide, PRO051, in patients with this disease. METHODS: Four patients, who were selected on the basis of their mutational status, muscle condition, and positive exon-skipping response to PRO051 in vitro, received a dose of 0.8 mg of PRO051 injected into the tibialis anterior muscle. A biopsy was performed 28 days later. Safety measures, composition of mRNA, and dystrophin expression were assessed. RESULTS: PRO051 injection was not associated with clinically apparent adverse events. Each patient showed specific skipping of exon 51 and sarcolemmal dystrophin in 64 to 97% of myofibers. The amount of dystrophin in total protein extracts ranged from 3 to 12% of that found in the control specimen and from 17 to 35% of that of the control specimen in the quantitative ratio of dystrophin to laminin alpha2. CONCLUSIONS: Intramuscular injection of antisense oligonucleotide PRO051 induced dystrophin synthesis in four patients with Duchenne's muscular dystrophy who had suitable mutations, suggesting that further studies might be feasible.


Subject(s)
Dystrophin/biosynthesis , Muscular Dystrophy, Duchenne/drug therapy , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides/therapeutic use , Adolescent , Child , Drug Design , Dystrophin/analysis , Dystrophin/genetics , Exons , Humans , Injections, Intramuscular , Male , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Oligonucleotides/adverse effects , Oligonucleotides, Antisense/adverse effects , RNA Splicing , RNA, Messenger/analysis , Sequence Deletion , Transcription, Genetic/drug effects
7.
Ann Neurol ; 54(6): 719-24, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14681881

ABSTRACT

Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is the second anterior horn cell disease in infants in which the genetic defect has been defined. SMARD1 results from mutations in the gene encoding the immunoglobulin micro-binding protein 2 (IGHMBP2) on chromosome 11q13. Our aim was to review the clinical features of 29 infants affected with SMARD1 and report on 26 novel IGHMBP2 mutations. Intrauterine growth retardation, weak cry, and foot deformities were the earliest symptoms of SMARD1. Most patients presented at the age of 1 to 6 months with respiratory distress due to diaphragmatic paralysis and progressive muscle weakness with predominantly distal lower limb muscle involvement. Sensory and autonomic nerves are also affected. Because of the poor prognosis, there is a demand for prenatal diagnosis, and clear diagnostic criteria for infantile SMARD1 are needed. The diagnosis of SMARD1 should be considered in infants with non-5q spinal muscular atrophy, neuropathy, and muscle weakness and/or respiratory distress of unclear cause. Furthermore, consanguineous parents of a child with sudden infant death syndrome should be examined for IGHMBP2 mutations.


Subject(s)
Carrier Proteins/genetics , DNA-Binding Proteins , Respiratory Distress Syndrome, Newborn/complications , Respiratory Distress Syndrome, Newborn/genetics , Spinal Muscular Atrophies of Childhood/complications , Spinal Muscular Atrophies of Childhood/genetics , Transcription Factors , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Respiratory Distress Syndrome, Newborn/physiopathology , Spinal Muscular Atrophies of Childhood/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...