Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Antioxidants (Basel) ; 13(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38671948

ABSTRACT

Endothelin-1 is a key regulator of vascular tone and blood pressure in health and disease. We have recently found that ET-1 production in human microvascular endothelial cells (HMECs) can be promoted by angiotensin II (Ang II) through a novel mechanism involving octamer-binding transcription factor-1 (Oct-1), NADPH oxidase-2 (NOX2), and superoxide anions. As the formation of bioactive ET-1 also depends on endothelin-converting enzyme-1 (ECE-1), we investigated the transcriptional regulation of the ECE1 gene. We found that exposure of HMECs to Ang II resulted in a concentration- and time-dependent increase in ECE1 mRNA expression. Pharmacological inhibition of ECE-1 reduced Ang II-stimulated ET-1 release to baseline values. The effect of Ang II on ECE1 mRNA expression was associated with Oct-1 binding to the ECE1 promoter, resulting in its increased activity. Consequently, the Ang II-stimulated increase in ECE1 mRNA expression could be prevented by siRNA-mediated Oct-1 inhibition. It could also be abolished by silencing the NOX2 gene and neutralizing superoxide anions with superoxide dismutase. In mice fed a high-fat diet, cardiac expression of Ece1 mRNA increased in wild-type mice but not in Nox2-deficient animals. It can be concluded that Ang II engages Oct-1, NOX2, and superoxide anions to stimulate ECE1 expression in the endothelium.

2.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000021

ABSTRACT

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Subject(s)
Heart Failure , Renal Insufficiency, Chronic , Mice , Animals , Humans , Tumor Necrosis Factor-alpha/genetics , Uremic Toxins , Ventricular Remodeling , Heart Failure/etiology
3.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569721

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage calcification, loss of articular cartilage, bone changes, pain, and disability. Cartilage calcification is one hallmark of OA and is predominantly caused by basic calcium crystals formed due to an imbalance of the pyrophosphate pathway. Sortilin is a transmembrane protein that contributes to vascular calcification in atherosclerosis by externalizing alkaline phosphatase (ALP)-containing vesicles. Calcification in atherosclerosis and osteoarthritis has been associated with cellular senescence. The aim of this study was to investigate the potential role of sortilin and senescence in osteoarthritis-dependent cartilage calcification. Osteoarthritic cartilage from human knee joints was collected after joint replacement, and samples were analyzed by immunohistochemistry and quantitative RT-PCR analysis. Human chondrocytes were treated with osteogenic medium for up to 21 days to induce calcification. Western blots for sortilin and ALP, as well as an ALP activity assay, were performed. Human chondrocytes were treated with mitomycin C to induce senescence, and sortilin expression was quantified at the protein and gene levels. Sections of knee joints from a murine model of osteoarthritis were stained for sortilin and p16 and analyzed by immunohistochemistry. Treatment of wild-type chondrocytes using an osteogenic medium similar to human chondrocytes was performed. Osteoarthritic cartilage from mouse and human knee joints showed an increased number of sortilin and p16-positive chondrocytes compared to healthy cartilage. This observation was corroborated by increased gene expression of sortilin and p16 in mild and moderate osteoarthritic cartilage samples. To investigate the mechanism of sortilin regulation, human chondrocytes were treated with osteogenic medium to induce calcification. Sortilin protein levels and expression were increased after 7 days of stimulation, whereas ALP levels and activity were upregulated after 21 days of stimulation. Similar observations were made in a murine osteoarthritis model. Mechanistically, senescent chondrocytes induced by mitomycin C showed an upregulation of sortilin and ALP gene expression compared to non-senescent chondrocytes. Our data indicate that sortilin and ALP are upregulated during cartilage calcification, which is associated with chondrocyte senescence and thus might contribute to the pathogenesis of osteoarthritis. Cellular senescence seems to induce sortilin expression.

4.
Arterioscler Thromb Vasc Biol ; 43(8): 1429-1440, 2023 08.
Article in English | MEDLINE | ID: mdl-37381986

ABSTRACT

BACKGROUND: Increasing evidence suggests that superoxide ions produced by NOX (nicotinamide adenine dinucleotide phosphate oxidases) mediate vascular effects of Ang II (angiotensin II) evoked by atherogenic diets. Here, we analyzed the mechanism by which NOX2 contributes to Ang II-induced ET-1 (endothelin 1) production in human microvascular endothelial cells. METHODS: The effects of high-fat diet were compared between WT (wild type) and Nox2 (mouse NOX2 gene)-deficient mice. ET-1 production and NOX2 expression by human microvascular endothelial cells in vitro were analyzed by ELISA, reverse transcription quantitative polymerase chain reaction, electrophoretic mobility shift assay, promoter deletions, RNA interference, and pharmacological inhibition. Production of superoxide anions was visualized by fluorescent cell labeling. RESULTS: Feeding mice high-fat diet for 10 weeks increased cardiac expression and plasma levels of Ang II and ET-1 in WT but not in Nox2-deficient animals. Exposure of human microvascular endothelial cells to Ang II resulted in increased ET-1 production, which could be blocked by silencing NOX2 (human NOX2 gene). Ang II promoted NOX2 expression through induction of the Oct-1 (human/mouse octamer binding transcription factor 1 protein) and activation of the NOX2 promoter region containing Oct-1-binding sites. Stimulation of NOX2 expression by Ang II was associated with increased production of superoxide anions. Inhibition of Oct-1 by small interfering RNA reduced Ang II-induced NOX2 expression and superoxide anion production, and neutralization of superoxide by SOD (superoxide dismutase) abolished Ang II-stimulated ET1 (human ET-1 gene) promoter activity, ET1 mRNA expression, and ET-1 release. CONCLUSIONS: Ang II may promote ET-1 production in the endothelium in response to atherogenic diets through a mechanism that involves the transcription factor Oct-1 and the increased formation of superoxide anions by NOX2.


Subject(s)
Endothelial Cells , Superoxides , Mice , Animals , Humans , Superoxides/metabolism , Endothelial Cells/metabolism , Octamer Transcription Factor-1 , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Reactive Oxygen Species/metabolism
5.
Circ Res ; 132(8): 993-1012, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37053279

ABSTRACT

Patients with chronic kidney disease (CKD) exhibit tremendously elevated risk for cardiovascular disease, particularly ischemic heart disease, due to premature vascular and cardiac aging and accelerated ectopic calcification. The presence of cardiovascular calcification associates with increased risk in patients with CKD. Disturbed mineral homeostasis and diverse comorbidities in these patients drive increased systemic cardiovascular calcification in different manifestations with diverse clinical consequences, like plaque instability, vessel stiffening, and aortic stenosis. This review outlines the heterogeneity in calcification patterning, including mineral type and location and potential implications on clinical outcomes. The advent of therapeutics currently in clinical trials may reduce CKD-associated morbidity. Development of therapeutics for cardiovascular calcification begins with the premise that less mineral is better. While restoring diseased tissues to a noncalcified homeostasis remains the ultimate goal, in some cases, calcific mineral may play a protective role, such as in atherosclerotic plaques. Therefore, developing treatments for ectopic calcification may require a nuanced approach that considers individual patient risk factors. Here, we discuss the most common cardiac and vascular calcification pathologies observed in CKD, how mineral in these tissues affects function, and the potential outcomes and considerations for therapeutic strategies that seek to disrupt the nucleation and growth of mineral. Finally, we discuss future patient-specific considerations for treating cardiac and vascular calcification in patients with CKD-a population in need of anticalcification therapies.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Vascular Calcification , Humans , Renal Insufficiency, Chronic/complications , Vascular Calcification/etiology , Cardiovascular Diseases/etiology , Minerals , Aging
7.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768960

ABSTRACT

Mitochondria are dynamic organelles regulating metabolism, cell death, and energy production. Therefore, maintaining mitochondrial health is critical for cellular homeostasis. Mitophagy and mitochondrial reorganization via fission and fusion are established mechanisms for ensuring mitochondrial quality. In recent years, mitochondrial-derived vesicles (MDVs) have emerged as a novel cellular response. MDVs are shed from the mitochondrial surface and can be directed to lysosomes or peroxisomes for intracellular degradation. MDVs may contribute to cardiovascular disease (CVD) which is characterized by mitochondrial dysfunction. In addition, evidence suggests that mitochondrial content is present in extracellular vesicles (EVs). Herein, we provide an overview of the current knowledge on MDV formation and trafficking. Moreover, we review recent findings linking MDV and EV biogenesis and discuss their role in CVD. Finally, we discuss the role of vesicle-mediated mitochondrial transfer and its potential cardioprotective effects.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Humans , Cardiovascular Diseases/metabolism , Mitochondria/metabolism , Lysosomes/metabolism , Peroxisomes/metabolism , Extracellular Vesicles/metabolism
8.
Theranostics ; 13(2): 659-672, 2023.
Article in English | MEDLINE | ID: mdl-36632229

ABSTRACT

Rationale: Calcium plays an essential role in the biology of vertebrates. Calcium content in body fluids is maintained within a narrow physiologic range by feedback control. Phosphate is equally important for metabolism and is likewise controlled, albeit over a wider range. This results in a nearly supersaturated state of calcium phosphate in body liquids driving mineral precipitation in soft tissues, which is actively prevented by calcification inhibitors. The hepatic plasma protein fetuin-A is a circulating mineralization inhibitor regulating calcium phosphate crystal growth and calcified matrix metabolism. Ectopic mineralization is associated with many pathological conditions aggravating their outcome. Current diagnostic methods lack sensitivity towards microcalcifications representing the initial stages of the process. Given the irreversibility of established calcifications, novel diagnostic tools capable of detecting nascent calcium phosphate deposits are highly desirable. Methods: We designed fluorescent fusion proteins consisting of fetuin-A coupled to a green or red fluorescent protein derivate, mEmerald or mRuby3, respectively. The proteins were expressed in mammalian cell lines. Sequence optimization resolved folding issues and increased sensitivity of mineral binding. Chimeric proteins were tested for their ability to detect calcifications in cell cultures and tissue sections retrieved from calcification-prone mice. Results: We employed novel genetically labeled fetuin-A-based fluorescent proteins for the detection of ectopic calcifications. We show that fetuin-A-based imaging agents are non-toxic and suitable for live imaging of microcalcifications beyond the detection limit of conventional staining techniques. The ability of fetuin-A to preferentially bind nascent calcium phosphate crystals allowed the resolution of histopathological detail of early kidney damage that went previously undetected. Endogenous expression of fetuin-A fluorescent fusion proteins allowed extended live imaging of calcifying cells with unprecedented sensitivity and specificity. Conclusion: Ectopic microcalcifications represent a major clinical concern lacking effective diagnostic and treatment options. In this paper, we describe novel highly sensitive fetuin-A-based fluorescent probes for imaging microcalcifications. We show that fusion proteins consisting of a fetuin-A mineral binding moiety and a fluorescent protein are superior to the routine methods for detecting calcifications. They also surpass in continuous live cell imaging the chemically fluorescence labeled fetuin-A, which we established previously.


Subject(s)
Calcinosis , Calcium , alpha-2-HS-Glycoprotein , Animals , Mice , alpha-2-HS-Glycoprotein/metabolism , Calcinosis/diagnostic imaging , Calcium/metabolism , Calcium Phosphates/metabolism , Protein Binding
9.
Eur Heart J ; 44(10): 885-898, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36660854

ABSTRACT

AIMS: Calcific aortic valve disease (CAVD) is the most common valve disease, which consists of a chronic interplay of inflammation, fibrosis, and calcification. In this study, sortilin (SORT1) was identified as a novel key player in the pathophysiology of CAVD, and its role in the transformation of valvular interstitial cells (VICs) into pathological phenotypes is explored. METHODS AND RESULTS: An aortic valve (AV) wire injury (AVWI) mouse model with sortilin deficiency was used to determine the effects of sortilin on AV stenosis, fibrosis, and calcification. In vitro experiments employed human primary VICs cultured in osteogenic conditions for 7, 14, and 21 days; and processed for imaging, proteomics, and transcriptomics including single-cell RNA-sequencing (scRNA-seq). The AVWI mouse model showed reduced AV fibrosis, calcification, and stenosis in sortilin-deficient mice vs. littermate controls. Protein studies identified the transition of human VICs into a myofibroblast-like phenotype mediated by sortilin. Sortilin loss-of-function decreased in vitro VIC calcification. ScRNA-seq identified 12 differentially expressed cell clusters in human VIC samples, where a novel combined inflammatory myofibroblastic-osteogenic VIC (IMO-VIC) phenotype was detected with increased expression of SORT1, COL1A1, WNT5A, IL-6, and serum amyloid A1. VICs sequenced with sortilin deficiency showed decreased IMO-VIC phenotype. CONCLUSION: Sortilin promotes CAVD by mediating valvular fibrosis and calcification, and a newly identified phenotype (IMO-VIC). This is the first study to examine the role of sortilin in valvular calcification and it may render it a therapeutic target to inhibit IMO-VIC emergence by simultaneously reducing inflammation, fibrosis, and calcification, the three key pathological processes underlying CAVD.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Humans , Animals , Mice , Aortic Valve Stenosis/genetics , Aortic Valve/pathology , Calcinosis/metabolism , Constriction, Pathologic , Cells, Cultured , Fibrosis
10.
Transl Res ; 251: 2-13, 2023 01.
Article in English | MEDLINE | ID: mdl-35724933

ABSTRACT

Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.


Subject(s)
Atherosclerosis , Calcinosis , Dyslipidemias , Plaque, Atherosclerotic , Mice , Humans , Animals , Alkaline Phosphatase , Muscle, Smooth, Vascular , Positron Emission Tomography Computed Tomography , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Apolipoproteins E , Triglycerides
11.
Front Cardiovasc Med ; 9: 959457, 2022.
Article in English | MEDLINE | ID: mdl-36204585

ABSTRACT

Introduction: Vascular calcification (VC) is a major risk factor for cardiovascular morbidity and mortality. Depending on the location of mineral deposition within the arterial wall, VC is classified as intimal and medial calcification. Using in vitro mineralization assays, we developed protocols triggering both types of calcification in vascular smooth muscle cells (SMCs) following diverging molecular pathways. Materials and methods and results: Human coronary artery SMCs were cultured in osteogenic medium (OM) or high calcium phosphate medium (CaP) to induce a mineralized extracellular matrix. OM induces osteoblast-like differentiation of SMCs-a key process in intimal calcification during atherosclerotic plaque remodeling. CaP mimics hyperphosphatemia, associated with chronic kidney disease-a risk factor for medial calcification. Transcriptomic analysis revealed distinct gene expression profiles of OM and CaP-calcifying SMCs. OM and CaP-treated SMCs shared 107 differentially regulated genes related to SMC contraction and metabolism. Real-time extracellular efflux analysis demonstrated decreased mitochondrial respiration and glycolysis in CaP-treated SMCs compared to increased mitochondrial respiration without altered glycolysis in OM-treated SMCs. Subsequent kinome and in silico drug repurposing analysis (Connectivity Map) suggested a distinct role of protein kinase C (PKC). In vitro validation experiments demonstrated that the PKC activators prostratin and ingenol reduced calcification triggered by OM and promoted calcification triggered by CaP. Conclusion: Our direct comparison results of two in vitro calcification models strengthen previous observations of distinct intracellular mechanisms that trigger OM and CaP-induced SMC calcification in vitro. We found a differential role of PKC in OM and CaP-calcified SMCs providing new potential cellular and molecular targets for pharmacological intervention in VC. Our data suggest that the field should limit the generalization of results found in in vitro studies using different calcification protocols.

12.
Clin Transl Med ; 12(2): e682, 2022 02.
Article in English | MEDLINE | ID: mdl-35184400

ABSTRACT

RATIONALE: Vascular calcification is a prominent feature of late-stage diabetes, renal and cardiovascular disease (CVD), and has been linked to adverse events. Recent studies in patients reported that plasma levels of osteomodulin (OMD), a proteoglycan involved in bone mineralisation, associate with diabetes and CVD. We hypothesised that OMD could be implicated in these diseases via vascular calcification as a common underlying factor and aimed to investigate its role in this context. METHODS AND RESULTS: In patients with chronic kidney disease, plasma OMD levels correlated with markers of inflammation and bone turnover, with the protein present in calcified arterial media. Plasma OMD also associated with cardiac calcification and the protein was detected in calcified valve leaflets by immunohistochemistry. In patients with carotid atherosclerosis, circulating OMD was increased in association with plaque calcification as assessed by computed tomography. Transcriptomic and proteomic data showed that OMD was upregulated in atherosclerotic compared to control arteries, particularly in calcified plaques, where OMD expression correlated positively with markers of smooth muscle cells (SMCs), osteoblasts and glycoproteins. Immunostaining confirmed that OMD was abundantly present in calcified plaques, localised to extracellular matrix and regions rich in α-SMA+ cells. In vivo, OMD was enriched in SMCs around calcified nodules in aortic media of nephrectomised rats and in plaques from ApoE-/- mice on warfarin. In vitro experiments revealed that OMD mRNA was upregulated in SMCs stimulated with IFNγ, BMP2, TGFß1, phosphate and ß-glycerophosphate, and by administration of recombinant human OMD protein (rhOMD). Mechanistically, addition of rhOMD repressed the calcification process of SMCs treated with phosphate by maintaining their contractile phenotype along with enriched matrix organisation, thereby attenuating SMC osteoblastic transformation. Mechanistically, the role of OMD is exerted likely through its link with SMAD3 and TGFB1 signalling, and interplay with BMP2 in vascular tissues. CONCLUSION: We report a consistent association of both circulating and tissue OMD levels with cardiovascular calcification, highlighting the potential of OMD as a clinical biomarker. OMD was localised in medial and intimal α-SMA+ regions of calcified cardiovascular tissues, induced by pro-inflammatory and pro-osteogenic stimuli, while the presence of OMD in extracellular environment attenuated SMC calcification.


Subject(s)
Extracellular Matrix Proteins/pharmacology , Muscle, Smooth/drug effects , Osteogenesis/genetics , Proteoglycans/pharmacology , Vascular Calcification/etiology , Analysis of Variance , Cohort Studies , Cross-Sectional Studies , Extracellular Matrix Proteins/metabolism , Humans , Linear Models , Muscle, Smooth/physiology , Netherlands , Osteogenesis/physiology , Prospective Studies , Proteoglycans/metabolism , Statistics, Nonparametric , Sweden , Vascular Calcification/genetics
13.
Cardiovasc Res ; 118(1): 84-96, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33070177

ABSTRACT

Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.


Subject(s)
Alkaline Phosphatase/metabolism , Arteries/metabolism , Vascular Calcification/metabolism , Alkaline Phosphatase/antagonists & inhibitors , Animals , Arteries/drug effects , Arteries/pathology , Arteries/physiopathology , Cardiovascular Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Humans , Phosphorylation , Signal Transduction , Substrate Specificity , Vascular Calcification/drug therapy , Vascular Calcification/pathology , Vascular Calcification/physiopathology
14.
Kidney Int ; 101(3): 574-584, 2022 03.
Article in English | MEDLINE | ID: mdl-34767831

ABSTRACT

Sortilin, an intracellular sorting receptor, has been identified as a cardiovascular risk factor in the general population. Patients with chronic kidney disease (CKD) are highly susceptible to develop cardiovascular complications such as calcification. However, specific CKD-induced posttranslational protein modifications of sortilin and their link to cardiovascular calcification remain unknown. To investigate this, we examined two independent CKD cohorts for carbamylation of circulating sortilin and detected increased carbamylated sortilin lysine residues in the extracellular domain of sortilin with kidney function decline using targeted mass spectrometry. Structure analysis predicted altered ligand binding by carbamylated sortilin, which was verified by binding studies using surface plasmon resonance measurement, showing an increased affinity of interleukin 6 to in vitro carbamylated sortilin. Further, carbamylated sortilin increased vascular calcification in vitro and ex vivo that was accelerated by interleukin 6. Imaging by mass spectrometry of human calcified arteries revealed in situ carbamylated sortilin. In patients with CKD, sortilin carbamylation was associated with coronary artery calcification, independent of age and kidney function. Moreover, patients with carbamylated sortilin displayed significantly faster progression of coronary artery calcification than patients without sortilin carbamylation. Thus, carbamylated sortilin may be a risk factor for cardiovascular calcification and may contribute to elevated cardiovascular complications in patients with CKD.


Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Adaptor Proteins, Vesicular Transport , Humans , Protein Carbamylation , Protein Processing, Post-Translational , Vascular Calcification/etiology
15.
Basic Res Cardiol ; 116(1): 57, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34647168

ABSTRACT

The adrenal glands participate in cardiovascular (CV) physiology and the pathophysiology of CV diseases through their effects on sodium and water metabolism, vascular tone and cardiac function. In the present study, we identified a new adrenal compound controlling mesenchymal cell differentiation that regulates osteoblastic differentiation in the context of vascular calcification. This peptide was named the "calcification blocking factor" (CBF) due to its protective effect against vascular calcification and is released from chromogranin A via enzymatic cleavage by calpain 1 and kallikrein. CBF reduced the calcium content of cells and thoracic aortic rings under calcifying culture conditions, as well as in aortas from animals treated with vitamin D and nicotine (VDN animals). Furthermore, CBF prevented vascular smooth muscle cell (VSMC) transdifferentiation into osteoblast-like cells within the vascular wall via the sodium-dependent phosphate transporter PIT-1 and by inhibition of NF-κB activation and the subsequent BMP2/p-SMAD pathway. Pulse pressure, a marker of arterial stiffness, was significantly decreased in VDN animals treated with CBF. In line with our preclinical data, CBF concentration is significantly reduced in diseases characterized by increased calcification, as shown in patients with chronic kidney disease. In preparation for clinical translation, the active site of the native 19-AS long native CBF was identified as EGQEEEED. In conclusion, we have identified the new peptide CBF, which is secreted from the adrenal glands and might prevent vascular calcification by inhibition of osteogenic transdifferentiation. The anti-calcific effects of CBF and short active site may therefore promote the development of new tools for the prevention and/or treatment of vascular calcification.


Subject(s)
Cell Transdifferentiation , Vascular Calcification , Animals , Cells, Cultured , Chromogranin A , Humans , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Calcification/prevention & control
16.
J Am Heart Assoc ; 10(20): e020834, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34632804

ABSTRACT

BACKGROUND New pharmacological approaches are needed to prevent stent restenosis. This study tested the hypothesis that pemafibrate, a novel clinical selective PPARα (peroxisome proliferator-activated receptor α) agonist, suppresses coronary stent-induced arterial inflammation and neointimal hyperplasia. METHODS AND RESULTS Yorkshire pigs randomly received either oral pemafibrate (30 mg/day; n=6) or control vehicle (n=7) for 7 days, followed by coronary arterial implantation of 3.5 × 12 mm bare metal stents (2-4 per animal; 44 stents total). On day 7, intracoronary molecular-structural near-infrared fluorescence and optical coherence tomography imaging was performed to assess the arterial inflammatory response, demonstrating that pemafibrate reduced stent-induced inflammatory protease activity (near-infrared fluorescence target-to-background ratio: pemafibrate, median [25th-75th percentile]: 2.8 [2.5-3.3] versus control, 4.1 [3.3-4.3], P=0.02). At day 28, animals underwent repeat near-infrared fluorescence-optical coherence tomography imaging and were euthanized, and coronary stent tissue molecular and histological analyses. Day 28 optical coherence tomography imaging showed that pemafibrate significantly reduced stent neointima volume (pemafibrate, 43.1 [33.7-54.1] mm3 versus control, 54.2 [41.2-81.1] mm3; P=0.03). In addition, pemafibrate suppressed day 28 stent-induced cellular inflammation and neointima expression of the inflammatory mediators TNF-α (tumor necrosis factor-α) and MMP-9 (matrix metalloproteinase 9) and enhanced the smooth muscle differentiation markers calponin and smoothelin. In vitro assays indicated that the STAT3 (signal transducer and activator of transcription 3)-myocardin axes mediated the inhibitory effects of pemafibrate on smooth muscle cell proliferation. CONCLUSIONS Pemafibrate reduces preclinical coronary stent inflammation and neointimal hyperplasia following bare metal stent deployment. These results motivate further trials evaluating pemafibrate as a new strategy to prevent clinical stent restenosis.


Subject(s)
Coronary Artery Disease , PPAR alpha , Animals , Benzoxazoles , Butyrates , Constriction, Pathologic , Hyperplasia , Inflammation/prevention & control , Neointima , Stents , Swine
17.
Cardiovasc Res ; 117(11): 2340-2353, 2021 09 28.
Article in English | MEDLINE | ID: mdl-33523181

ABSTRACT

AIMS: Proteostasis maintains protein homeostasis and participates in regulating critical cardiometabolic disease risk factors including proprotein convertase subtilisin/kexin type 9 (PCSK9). Endoplasmic reticulum (ER) remodeling through release and incorporation of trafficking vesicles mediates protein secretion and degradation. We hypothesized that ER remodeling that drives mitochondrial fission participates in cardiometabolic proteostasis. METHODS AND RESULTS: We used in vitro and in vivo hepatocyte inhibition of a protein involved in mitochondrial fission, dynamin-related protein 1 (DRP1). Here, we show that DRP1 promotes remodeling of select ER microdomains by tethering vesicles at ER. A DRP1 inhibitor, mitochondrial division inhibitor 1 (mdivi-1) reduced ER localization of a DRP1 receptor, mitochondrial fission factor, suppressing ER remodeling-driven mitochondrial fission, autophagy, and increased mitochondrial calcium buffering and PCSK9 proteasomal degradation. DRP1 inhibition by CRISPR/Cas9 deletion or mdivi-1 alone or in combination with statin incubation in human hepatocytes and hepatocyte-specific Drp1-deficiency in mice reduced PCSK9 secretion (-78.5%). In HepG2 cells, mdivi-1 increased low-density lipoprotein receptor via c-Jun transcription and reduced PCSK9 mRNA levels via suppressed sterol regulatory binding protein-1c. Additionally, mdivi-1 reduced macrophage burden, oxidative stress, and advanced calcified atherosclerotic plaque in aortic roots of diabetic Apoe-deficient mice and inflammatory cytokine production in human macrophages. CONCLUSIONS: We propose a novel tethering function of DRP1 beyond its established fission function, with DRP1-mediated ER remodeling likely contributing to ER constriction of mitochondria that drives mitochondrial fission. We report that DRP1-driven remodeling of select ER micro-domains may critically regulate hepatic proteostasis and identify mdivi-1 as a novel small molecule PCSK9 inhibitor.


Subject(s)
Atherosclerosis/drug therapy , Dynamins/antagonists & inhibitors , Endoplasmic Reticulum/drug effects , Liver/drug effects , Mitochondria, Liver/drug effects , PCSK9 Inhibitors/pharmacology , Proprotein Convertase 9/metabolism , Quinazolinones/pharmacology , Animals , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Disease Models, Animal , Dynamins/genetics , Dynamins/metabolism , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Hep G2 Cells , Humans , Liver/enzymology , Liver/pathology , Mice, Knockout, ApoE , Mitochondria, Liver/enzymology , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Mitochondrial Dynamics/drug effects , Proprotein Convertase 9/genetics , Proteasome Endopeptidase Complex , Protein Interaction Maps , Proteolysis , Proteostasis , Secretory Pathway
19.
Cells ; 9(10)2020 09 24.
Article in English | MEDLINE | ID: mdl-32987857

ABSTRACT

Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the developed world, yet no pharmacological therapy exists. Here, we hypothesize that the integration of multiple omic data represents an approach towards unveiling novel molecular networks in CAVD. Databases were searched for CAVD omic studies. Differentially expressed molecules from calcified and control samples were retrieved, identifying 32 micro RNAs (miRNA), 596 mRNAs and 80 proteins. Over-representation pathway analysis revealed platelet degranulation and complement/coagulation cascade as dysregulated pathways. Multi-omics integration of overlapping proteome/transcriptome molecules, with the miRNAs, identified a CAVD protein-protein interaction network containing seven seed genes (apolipoprotein A1 (APOA1), hemoglobin subunit ß (HBB), transferrin (TF), α-2-macroglobulin (A2M), transforming growth factor ß-induced protein (TGFBI), serpin family A member 1 (SERPINA1), lipopolysaccharide binding protein (LBP), inter-α-trypsin inhibitor heavy chain 3 (ITIH3) and immunoglobulin κ constant (IGKC)), four input miRNAs (miR-335-5p, miR-3663-3p, miR-21-5p, miR-93-5p) and two connector genes (amyloid beta precursor protein (APP) and transthyretin (TTR)). In a metabolite-gene-disease network, Alzheimer's disease exhibited the highest degree of betweenness. To further strengthen the associations based on the multi-omics approach, we validated the presence of APP and TTR in calcified valves from CAVD patients by immunohistochemistry. Our study suggests a novel molecular CAVD network potentially linked to the formation of amyloid-like structures. Further investigations on the associated mechanisms and therapeutic potential of targeting amyloid-like deposits in CAVD may offer significant health benefits.


Subject(s)
Amyloid/metabolism , Aortic Valve Stenosis/genetics , Aortic Valve/pathology , Calcinosis/genetics , Genomics , Aged , Benzothiazoles/metabolism , Female , Gene Regulatory Networks , Humans , Male , Metabolome/genetics , Middle Aged , Prealbumin/metabolism , Signal Transduction
20.
J Biol Chem ; 295(36): 12605-12617, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32647007

ABSTRACT

In the heart, the serine carboxypeptidase cathepsin A (CatA) is distributed between lysosomes and the extracellular matrix (ECM). CatA-mediated degradation of extracellular peptides may contribute to ECM remodeling and left ventricular (LV) dysfunction. Here, we aimed to evaluate the effects of CatA overexpression on LV remodeling. A proteomic analysis of the secretome of adult mouse cardiac fibroblasts upon digestion by CatA identified the extracellular antioxidant enzyme superoxide dismutase (EC-SOD) as a novel substrate of CatA, which decreased EC-SOD abundance 5-fold. In vitro, both cardiomyocytes and cardiac fibroblasts expressed and secreted CatA protein, and only cardiac fibroblasts expressed and secreted EC-SOD protein. Cardiomyocyte-specific CatA overexpression and increased CatA activity in the LV of transgenic mice (CatA-TG) reduced EC-SOD protein levels by 43%. Loss of EC-SOD-mediated antioxidative activity resulted in significant accumulation of superoxide radicals (WT, 4.54 µmol/mg tissue/min; CatA-TG, 8.62 µmol/mg tissue/min), increased inflammation, myocyte hypertrophy (WT, 19.8 µm; CatA-TG, 21.9 µm), cellular apoptosis, and elevated mRNA expression of hypertrophy-related and profibrotic marker genes, without affecting intracellular detoxifying proteins. In CatA-TG mice, LV interstitial fibrosis formation was enhanced by 19%, and the type I/type III collagen ratio was shifted toward higher abundance of collagen I fibers. Cardiac remodeling in CatA-TG was accompanied by an increased LV weight/body weight ratio and LV end diastolic volume (WT, 50.8 µl; CatA-TG, 61.9 µl). In conclusion, CatA-mediated EC-SOD reduction in the heart contributes to increased oxidative stress, myocyte hypertrophy, ECM remodeling, and inflammation, implicating CatA as a potential therapeutic target to prevent ventricular remodeling.


Subject(s)
Cathepsin A/metabolism , Myocytes, Cardiac/metabolism , Proteolysis , Superoxide Dismutase/metabolism , Ventricular Remodeling , Animals , Cathepsin A/genetics , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/pathology , Superoxide Dismutase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...