Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Methods Mol Biol ; 2807: 163-171, 2024.
Article in English | MEDLINE | ID: mdl-38743228

ABSTRACT

Mammalian cells have developed and optimized defense mechanisms to prevent or hamper viral infection. The early transcriptional silencing of incoming viral DNAs is one such antiviral strategy and seems to be of fundamental importance, since most cell types silence unintegrated retroviral DNAs. In this chapter, a method for chromatin immunoprecipitation of unintegrated DNA is described. This technique allows investigators to examine histone and co-factor interactions with unintegrated viral DNAs as well as to analyze histone modifications in general or in a kinetic fashion at various time points during viral infection.


Subject(s)
Chromatin Immunoprecipitation , Genome, Viral , Histones , Retroviridae , Histones/metabolism , Humans , Chromatin Immunoprecipitation/methods , Retroviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Animals , DNA, Viral/genetics , Antibodies/immunology
2.
Nature ; 623(7987): 643-651, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938774

ABSTRACT

In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.


Subject(s)
Gene Silencing , Histones , Long Interspersed Nucleotide Elements , Lysine , S Phase , Humans , DNA Replication , Histones/chemistry , Histones/metabolism , Long Interspersed Nucleotide Elements/genetics , Lysine/metabolism , Methylation
3.
Nat Cancer ; 4(11): 1561-1574, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783804

ABSTRACT

Transmissible cancers are infectious parasitic clones that metastasize to new hosts, living past the death of the founder animal in which the cancer initiated. We investigated the evolutionary history of a cancer lineage that has spread though the soft-shell clam (Mya arenaria) population by assembling a chromosome-scale soft-shell clam reference genome and characterizing somatic mutations in transmissible cancer. We observe high mutation density, widespread copy-number gain, structural rearrangement, loss of heterozygosity, variable telomere lengths, mitochondrial genome expansion and transposable element activity, all indicative of an unstable cancer genome. We also discover a previously unreported mutational signature associated with overexpression of an error-prone polymerase and use this to estimate the lineage to be >200 years old. Our study reveals the ability for an invertebrate cancer lineage to survive for centuries while its genome continues to structurally mutate, likely contributing to the evolution of this lineage as a parasitic cancer.


Subject(s)
Mya , Neoplasms , Animals , Mya/genetics , Genomic Instability/genetics
4.
Nature ; 622(7982): 376-382, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696289

ABSTRACT

Nirmatrelvir is a specific antiviral drug that targets the main protease (Mpro) of SARS-CoV-2 and has been approved to treat COVID-191,2. As an RNA virus characterized by high mutation rates, whether SARS-CoV-2 will develop resistance to nirmatrelvir is a question of concern. Our previous studies have shown that several mutational pathways confer resistance to nirmatrelvir, but some result in a loss of viral replicative fitness, which is then compensated for by additional alterations3. The molecular mechanisms for this observed resistance are unknown. Here we combined biochemical and structural methods to demonstrate that alterations at the substrate-binding pocket of Mpro can allow SARS-CoV-2 to develop resistance to nirmatrelvir in two distinct ways. Comprehensive studies of the structures of 14 Mpro mutants in complex with drugs or substrate revealed that alterations at the S1 and S4 subsites substantially decreased the level of inhibitor binding, whereas alterations at the S2 and S4' subsites unexpectedly increased protease activity. Both mechanisms contributed to nirmatrelvir resistance, with the latter compensating for the loss in enzymatic activity of the former, which in turn accounted for the restoration of viral replicative fitness, as observed previously3. Such a profile was also observed for ensitrelvir, another clinically relevant Mpro inhibitor. These results shed light on the mechanisms by which SARS-CoV-2 evolves to develop resistance to the current generation of protease inhibitors and provide the basis for the design of next-generation Mpro inhibitors.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/virology , Lactams , Leucine , Nitriles , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Binding Sites/drug effects , Binding Sites/genetics , Mutation , Substrate Specificity , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Virus Replication/drug effects , Drug Design , Proline
5.
Viruses ; 15(2)2023 02 08.
Article in English | MEDLINE | ID: mdl-36851687

ABSTRACT

Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.


Subject(s)
Amino Acyl-tRNA Synthetases , HIV-1 , Humans , Amino Acyl-tRNA Synthetases/genetics , Cytoplasm , Cytosol , HIV-1/genetics , Proteomics , Protein Subunits/metabolism
6.
Nature ; 613(7944): 558-564, 2023 01.
Article in English | MEDLINE | ID: mdl-36351451

ABSTRACT

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful against COVID-19 (refs. 1,2). However, because SARS-CoV-2 has evolved to become resistant to other therapeutic modalities3-9, there is a concern that the same could occur for nirmatrelvir. Here we examined this possibility by in vitro passaging of SARS-CoV-2 in nirmatrelvir using two independent approaches, including one on a large scale. Indeed, highly resistant viruses emerged from both and their sequences showed a multitude of 3CL protease mutations. In the experiment peformed with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Nevertheless, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones showed that these mutations mediated only low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (around 100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next-generation protease inhibitors.


Subject(s)
Antiviral Agents , COVID-19 , Drug Resistance, Viral , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Mutation , COVID-19 Drug Treatment
7.
Nat Genet ; 54(12): 1946-1958, 2022 12.
Article in English | MEDLINE | ID: mdl-36456880

ABSTRACT

Specialized connective tissues, including bone and adipose tissues, control various physiological activities, including mineral and energy homeostasis. However, the identity of stem cells maintaining these tissues throughout adulthood remains elusive. By conducting genetic lineage tracing and cell depletion experiments in newly generated knock-in Cre/CreERT2 lines, we show here that rare Prrx1-expressing cells act as stem cells for bone, white adipose tissue and dermis in adult mice, which are indispensable for the homeostasis and repair of these tissues. Single-cell profiling reveals the cycling and multipotent nature of Prrx1-expressing cells and the stemness of these cells is further validated by transplantation assays. Moreover, we identify the cell surface markers for Prrx1-expressing stem cells and show that the activities of these stem cells are regulated by Wnt signaling. These findings expand our knowledge of connective tissue homeostasis/regeneration and may help improve stem-cell-based therapies.


Subject(s)
Adipose Tissue, White , Stem Cells , Mice , Animals
8.
Cell Host Microbe ; 30(10): 1354-1362.e6, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36029764

ABSTRACT

The SARS-CoV-2 3CL protease (3CLpro) is an attractive therapeutic target, as it is essential to the virus and highly conserved among coronaviruses. However, our current understanding of its tolerance to mutations is limited. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the 3CLpro and validate a subset of our results within authentic viruses. We reveal that the 3CLpro is highly malleable and is capable of tolerating mutations throughout the protein. Yet, we also identify specific residues that appear immutable, suggesting that these may be targets for future 3CLpro inhibitors. Finally, we utilize our screening as a basis to identify E166V as a resistance-conferring mutation against the clinically used 3CLpro inhibitor, nirmatrelvir. Collectively, the functional map presented herein may serve as a guide to better understand the biological properties of the 3CLpro and for drug development against coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Peptide Hydrolases/genetics , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2/genetics
9.
J Virol ; 96(16): e0052622, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35913217

ABSTRACT

The zinc finger antiviral protein (ZAP) is an interferon-stimulated gene (ISG) with potent intrinsic antiviral activity. ZAP inhibits the replication of retroviruses, including murine leukemia virus (MLV) and HIV-1, as well as alphaviruses, filoviruses, and hepatitis B virus, and also the retrotransposition of LINE-1 and Alu retroelements. ZAP operates posttranscriptionally to reduce the levels of viral transcripts available for translation in the cytoplasm, although additional functions might be involved. Recent studies have shown that ZAP preferentially binds viral mRNAs containing clusters of CpG dinucleotides via its four CCCH-type zinc fingers. ZAP lacks enzymatic activity and utilizes other cellular proteins to suppress viral replication. Tripartite motif 25 (TRIM25) and the nuclease KHNYN have been identified as ZAP cofactors. In this study, we identify Riplet, a protein known to play a central role in the activation of the retinoic acid-inducible gene I (RIG-I), as a novel ZAP cofactor. Overexpression of Riplet acts to strongly augment ZAP's antiviral activity. Riplet is an E3 ubiquitin ligase containing three domains, an N-terminal RING finger domain, a central coiled-coil domain, and a C-terminal P/SPRY domain. We show that Riplet interacts with ZAP via its P/SPRY domain and that the ubiquitin ligase activity of Riplet is not required to stimulate ZAP-mediated virus inhibition. Moreover, we show that Riplet interacts with TRIM25, suggesting that both Riplet and TRIM25 may operate as a complex to augment ZAP activity. IMPORTANCE The ZAP is a potent restriction factor inhibiting replication of many RNA viruses by binding directly to viral RNAs and targeting them for degradation. We here identify RIPLET as a cofactor that stimulates ZAP activity. The finding connects ZAP to other innate immunity pathways and suggests oligomerization as a common theme in sensing pathogenic RNAs.


Subject(s)
HIV Infections/immunology , HIV-1 , Ubiquitin-Protein Ligases/metabolism , Animals , HIV-1/genetics , HIV-1/metabolism , Ubiquitination , Virus Replication , Zinc Fingers
10.
bioRxiv ; 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36032976

ABSTRACT

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful in reducing hospitalization or death due to COVID-19 1,2 . However, as SARS-CoV-2 has evolved to become resistant to other therapeutic modalities 3â€"9 , there is a concern that the same could occur for nirmatrelvir. Here, we have examined this possibility by in vitro passaging of SARS-CoV-2 in increasing concentrations of nirmatrelvir using two independent approaches, including one on a large scale in 480 wells. Indeed, highly resistant viruses emerged from both, and their sequences revealed a multitude of 3CL protease mutations. In the experiment done at a larger scale with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Yet, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L, or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones, each containing a unique mutation or a combination of mutations showed that the above precursor mutations only mediated low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (~100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Structural explanations are discussed for some of the mutations that are proximal to the drug-binding site, as well as cross-resistance or lack thereof to ensitrelvir, another clinically important 3CL protease inhibitor. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro , and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next generation protease inhibitors.

11.
Retrovirology ; 19(1): 16, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810297

ABSTRACT

Mammalian cells mount a variety of defense mechanisms against invading viruses to prevent or reduce infection. One such defense is the transcriptional silencing of incoming viral DNA, including the silencing of unintegrated retroviral DNA in most cells. Here, we report that the lymphoid cell lines K562 and Jurkat cells reveal a dramatically higher efficiency of silencing of viral expression from unintegrated HIV-1 DNAs as compared to HeLa cells. We found K562 cells in particular to exhibit an extreme silencing phenotype. Infection of K562 cells with a non-integrating viral vector encoding a green fluorescent protein reporter resulted in a striking decrease in the number of fluorescence-positive cells and in their mean fluorescence intensity as compared to integration-competent controls, even though the levels of viral DNA in the nucleus were equal or in the case of 2-LTR circles even higher. The silencing in K562 cells was functionally distinctive. Histones loaded on unintegrated HIV-1 DNA in K562 cells revealed high levels of the silencing mark H3K9 trimethylation and low levels of the active mark H3 acetylation, as detected in HeLa cells. But infection of K562 cells resulted in low H3K27 trimethylation levels on unintegrated viral DNA as compared to higher levels in HeLa cells, corresponding to low H3K27 trimethylation levels of silent host globin genes in K562 cells as compared to HeLa cells. Most surprisingly, treatment with the HDAC inhibitor trichostatin A, which led to a highly efficient relief of silencing in HeLa cells, only weakly relieved silencing in K562 cells. In summary, we found that the capacity for silencing viral DNAs differs between cell lines in its extent, and likely in its mechanism.


Subject(s)
HIV-1 , Animals , DNA, Viral/genetics , DNA, Viral/metabolism , HIV-1/physiology , HeLa Cells , Humans , Lymphocytes/metabolism , Mammals , Virus Integration
12.
bioRxiv ; 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35860222

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as the etiologic agent of COVID-19 (coronavirus disease 2019) has drastically altered life globally. Numerous efforts have been placed on the development of therapeutics to treat SARS-CoV-2 infection. One particular target is the 3CL protease (3CL pro ), which holds promise as it is essential to the virus and highly conserved among coronaviruses, suggesting that it may be possible to find broad inhibitors that treat not just SARS-CoV-2 but other coronavirus infections as well. While the 3CL protease has been studied by many groups for SARS-CoV-2 and other coronaviruses, our understanding of its tolerance to mutations is limited, knowledge which is particularly important as 3CL protease inhibitors become utilized clinically. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the SARS-CoV-2 3CL pro , and validate our results both in yeast and in authentic viruses. We reveal that the 3CL pro is highly malleable and is capable of tolerating mutations throughout the protein, including within the substrate binding pocket. Yet, we also identify specific residues that appear immutable for function of the protease, suggesting that these interactions may be novel targets for the design of future 3CL pro inhibitors. Finally, we utilize our screening results as a basis to identify E166V as a resistance-conferring mutation against the therapeutic 3CL pro inhibitor, nirmatrelvir, in clinical use. Collectively, the functional map presented herein may serve as a guide for further understanding of the biological properties of the 3CL protease and for drug development for current and future coronavirus pandemics.

13.
Cell Rep ; 39(8): 110840, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613597

ABSTRACT

The integration of HIV-1 DNA into the host genome results in single-strand gaps and 2-nt overhangs at the ends of viral DNA, which must be repaired by cellular enzymes. The cellular factors responsible for the DNA damage repair in HIV-1 DNA integration have not yet been well defined. We report here that HIV-1 infection potently activates the Fanconi anemia (FA) DNA repair pathway, and the FA effector proteins FANCI-D2 bind to the C-terminal domain of HIV-1 integrase. Knockout of FANCI blocks productive viral DNA integration and inhibits the replication of HIV-1. Finally, we show that the knockout of DNA polymerases or flap nuclease downstream of FANCI-D2 reduces the levels of integrated HIV-1 DNA, suggesting these enzymes may be responsible for the repair of DNA damages induced by viral DNA integration. These experiments reveal that HIV-1 exploits the FA pathway for the stable integration of viral DNA into host genome.


Subject(s)
Fanconi Anemia , HIV-1 , DNA Damage , DNA Repair , DNA, Viral/genetics , DNA, Viral/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , HIV-1/genetics , HIV-1/metabolism , Humans , Ubiquitination
14.
Nat Commun ; 13(1): 1474, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304442

ABSTRACT

Retroviruses utilize the viral integrase (IN) protein to integrate a DNA copy of their genome into host chromosomal DNA. HIV-1 integration sites are highly biased towards actively transcribed genes, likely mediated by binding of the IN protein to specific host factors, particularly LEDGF, located at these gene regions. We here report a substantial redirection of integration site distribution induced by a single point mutation in HIV-1 IN. Viruses carrying the K258R IN mutation exhibit a high frequency of integrations into centromeric alpha satellite repeat sequences, as assessed by deep sequencing, a more than 10-fold increase over wild-type. Quantitative PCR and in situ immunofluorescence assays confirm this bias of the K258R mutant virus for integration into centromeric DNA. Immunoprecipitation studies identify host factors binding to IN that may account for the observed bias for integration into centromeres. Centromeric integration events are known to be enriched in the latent reservoir of infected memory T cells, as well as in elite controllers who limit viral replication without intervention. The K258R point mutation in HIV-1 IN is also present in databases of latent proviruses found in patients, and may reflect an unappreciated aspect of the establishment of viral latency.


Subject(s)
HIV Integrase , Point Mutation , Centromere/genetics , Centromere/metabolism , HIV Integrase/genetics , HIV Integrase/metabolism , Humans , Proviruses/genetics , Virus Integration/genetics , Virus Replication
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074917

ABSTRACT

Early events of the retroviral life cycle are the targets of many host restriction factors that have evolved to prevent establishment of infection. Incoming retroviral DNAs are transcriptionally silenced before integration in most cell types, and efficient viral gene expression occurs only after formation of the provirus. The molecular machinery for silencing unintegrated retroviral DNAs of HIV-1 remains poorly characterized. Here, we identified the histone chaperones CHAF1A and CHAF1B as essential factors for silencing of unintegrated HIV-1 DNAs. Using RNAi-mediated knockdown (KD) of multiple histone chaperones, we found that KD of CHAF1A or CHAF1B resulted in a pronounced increase in expression of incoming viral DNAs. The function of these two proteins in silencing was independent of their interaction partner RBBP4. Viral DNA levels accumulated to significantly higher levels in CHAF1A KD cells over controls, suggesting enhanced stabilization of actively transcribed DNAs. Chromatin immunoprecipitation assays revealed no major changes in histone loading onto viral DNAs in the absence of CHAF1A, but levels of the H3K9 trimethylation silencing mark were reduced. KD of the H3K9me3-binding protein HP1γ accelerated the expression of unintegrated HIV-1 DNAs. While CHAF1A was critical for silencing HIV-1 DNAs, it showed no role in silencing of unintegrated retroviral DNAs of mouse leukemia virus. Our study identifies CHAF1A and CHAF1B as factors involved specifically in silencing of HIV-1 DNAs early in infection. The results suggest that these factors act by noncanonical pathways, distinct from their histone loading activities, to mediate silencing of newly synthesized HIV-1 DNAs.


Subject(s)
Chromatin Assembly Factor-1/metabolism , DNA, Viral , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Proviruses/genetics , Virus Integration , Gene Expression Regulation, Viral , Gene Silencing , HIV-1/genetics , Histones/metabolism , Host-Pathogen Interactions , Humans , Transcription, Genetic , Tripartite Motif-Containing Protein 28/metabolism
16.
Viruses ; 13(11)2021 11 09.
Article in English | MEDLINE | ID: mdl-34835055

ABSTRACT

Retroviral infection delivers an RNA genome into the cytoplasm that serves as the template for the synthesis of a linear double-stranded DNA copy by the viral reverse transcriptase. Within the nucleus this linear DNA gives rise to extrachromosomal circular forms, and in a key step of the life cycle is inserted into the host genome to form the integrated provirus. The unintegrated DNA forms, like those of DNAs entering cells by other means, are rapidly loaded with nucleosomes and heavily silenced by epigenetic histone modifications. This review summarizes our present understanding of the silencing machinery for the DNAs of the mouse leukemia viruses and human immunodeficiency virus type 1. We consider the potential impact of the silencing on virus replication, on the sensing of the virus by the innate immune system, and on the formation of latent proviruses. We also speculate on the changeover to high expression from the integrated proviruses in permissive cell types, and briefly consider the silencing of proviruses even after integration in embryonic stem cells and other developmentally primitive cell types.


Subject(s)
DNA, Viral/genetics , Gene Silencing , Retroviridae/genetics , Animals , HIV-1/genetics , HIV-1/physiology , Histone Code , Humans , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/physiology , Proviruses/genetics , Proviruses/physiology , Retroviridae/physiology , Transcription, Genetic , Virus Integration , Virus Replication
17.
J Virol ; 95(19): e0061521, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287037

ABSTRACT

The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid (CA) lattice is located downstream of the CA protein in many retroviral Gags. The HIV-1 Gag protein contains a stretch of 5 amino acid residues termed the "clasp motif," important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of HIV-1 and Mason-Pfizer monkey virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide a comparable function. The importance of the sequences spanning the CA-nucleocapsid (NC) cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study, we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant proteins in vitro and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant viruses in vivo. The mutants revealed major defects in virion assembly and release in HEK 293T and HeLa cells and even larger defects in infectivity. Our data identify the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient retroviral infection. IMPORTANCE The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short "clasp" motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.


Subject(s)
Capsid Proteins/metabolism , Gene Products, gag/chemistry , Gene Products, gag/metabolism , Mason-Pfizer monkey virus/physiology , Virion/metabolism , Virus Assembly , Amino Acid Motifs , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cryoelectron Microscopy , Gene Products, gag/genetics , Genome, Viral , HEK293 Cells , HeLa Cells , Humans , Mason-Pfizer monkey virus/genetics , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Domains , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Genome Packaging
18.
J Virol ; 95(15): e0049521, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011543

ABSTRACT

During retrovirus infection, a histone-free DNA copy of the viral RNA genome is synthesized and rapidly loaded with nucleosomes de novo upon nuclear entry. The potential role of viral accessory proteins in histone loading onto retroviral DNAs has not been extensively investigated. The p12 protein of Moloney murine leukemia virus (MMLV) is a virion protein that is critical for tethering the incoming viral DNA to host chromatin in the early stages of infection. Infection by virions containing a mutant p12 (PM14) defective in chromatin tethering results in the formation of viral DNAs that do not accumulate in the nucleus. In this report, we show that viral DNAs of these mutants are not loaded with histones. Moreover, the DNA genomes delivered by mutant p12 show prolonged association with viral structural proteins nucleocapsid (NC) and capsid (CA). The histone-poor viral DNA genomes do not become associated with the host RNA polymerase II machinery. These findings provide insights into fundamental aspects of retroviral biology, indicating that tethering to host chromatin by p12 and retention in the nucleus are required to allow loading of histones onto the viral DNA. IMPORTANCE Incoming retroviral DNAs are rapidly loaded with nucleosomal histones upon entry into the nucleus and before integration into the host genome. The entry of murine leukemia virus DNA into the nucleus occurs only upon dissolution of the nuclear membrane in mitosis, and retention in the nucleus requires the action of a viral protein, p12, which tethers the DNA to host chromatin. Data presented here show that the tethering activity of p12 is required for the loading of histones onto the viral DNA. p12 mutants lacking tethering activity fail to acquire histones, retain capsid and nucleocapsid proteins, and are poorly transcribed. The work defines a new requirement for a viral protein to allow chromatinization of viral DNA.


Subject(s)
Capsid Proteins/metabolism , Gene Products, gag/genetics , Histones/metabolism , Moloney murine leukemia virus/growth & development , Moloney murine leukemia virus/metabolism , Capsid/metabolism , Cell Line, Tumor , Chromatin/metabolism , DNA, Viral/metabolism , Genome, Viral/genetics , HEK293 Cells , HeLa Cells , Humans , Moloney murine leukemia virus/genetics , Virus Assembly/genetics
19.
PLoS Pathog ; 16(12): e1009147, 2020 12.
Article in English | MEDLINE | ID: mdl-33351861

ABSTRACT

The central function of the retroviral integrase protein (IN) is to catalyze the integration of viral DNA into the host genome to form the provirus. The IN protein has also been reported to play a role in a number of other processes throughout the retroviral life cycle such as reverse transcription, nuclear import and particle morphogenesis. Studies have shown that HIV-1 IN is subject to multiple post-translational modifications (PTMs) including acetylation, phosphorylation and SUMOylation. However, the importance of these modifications during infection has been contentious. In this study we attempt to clarify the role of acetylation of HIV-1 IN during the retroviral life cycle. We show that conservative mutation of the known acetylated lysine residues has only a modest effect on reverse transcription and proviral integration efficiency in vivo. However, we observe a large defect in successful expression of proviral genes at early times after infection by an acetylation-deficient IN mutant that cannot be explained by delayed integration dynamics. We demonstrate that the difference between the expression of proviruses integrated by an acetylation mutant and WT IN is likely not due to altered integration site distribution but rather directly due to a lower rate of transcription. Further, the effect of the IN mutation on proviral gene expression is independent of the Tat protein or the LTR promoter. At early times after integration when the transcription defect is observed, the LTRs of proviruses integrated by the mutant IN have altered histone modifications as well as reduced IN protein occupancy. Over time as the transcription defect in the mutant virus diminishes, histone modifications on the WT and mutant proviral LTRs reach comparable levels. These results highlight an unexpected role for the IN protein in regulating proviral transcription at early times post-integration.


Subject(s)
DNA, Viral/physiology , HIV Integrase/genetics , HIV-1/genetics , Proviruses/genetics , Viral Transcription/genetics , Virus Integration/genetics , Acetylation , Cell Line , Humans , Mutation , Protein Processing, Post-Translational/genetics
20.
Viruses ; 12(8)2020 08 13.
Article in English | MEDLINE | ID: mdl-32823517

ABSTRACT

Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.


Subject(s)
Endogenous Retroviruses/genetics , Gene Expression Regulation , Gene Silencing , Host Microbial Interactions/genetics , Transcription, Genetic , Animals , Chromatin Assembly and Disassembly , DNA Methylation , Humans , Mice , Retroviridae Infections
SELECTION OF CITATIONS
SEARCH DETAIL
...