Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Dokl Biol Sci ; 508(1): 9-19, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37186044

ABSTRACT

Up-to-date information on the occurrence of Fusarium fungi and their mycotoxins in the grain of wheat, barley and oats grown in the Urals and West Siberia in 2018‒2019 is presented. Mycological analysis of grain revealed at least 16 species of Fusarium fungi. The F. sporotrichioides, F. avenaceum, F. poae, and F. anguioides were predominant, and the proportions of these species among all Fusarium fungi found in the grain were 31, 20, 19, and 13%, respectively. Fusarium graminearum and its mycotoxin deoxynivalenol (DON) are often occurred in grain mycobiota of cereal crops on the territory of both the Urals and West Siberia. New records of fungal species that are rare in the Asian territory of Russia were detected: F. langsethiae and F. sibiricum, which are mainly producers of type A trichothecene mycotoxins, were found in the Kurgan and Kemerovo regions, respectively. In addition, F. globosum that is able to produce fumonisins was detected in Altai Krai and Omsk region. The diversity of Fusarium species was higher in wheat and barley grain samples than in oats. The HPLC-MS/MS method was used to analyse the content of 19 mycotoxins produced by Fusarium fungi. The highest diversity of mycotoxins was found in wheat grain (maximum 12), compared with oats (9) and barley (8). The T-2 and HT-2 toxins, DON, nivalenol, moniliformin (MON) and beauvericin (BEA) occurred more often in the grain samples, compared with other mycotoxins, but their amounts varied significantly, depending on the weather conditions in sampling year and the plant species. The average content of DON (maximum amount was 375 µg/kg) in wheat grain was 5 times higher than its average content in barley grain, and this mycotoxin was not detected in oat grain. The contamination with T-2 and HT-toxins (maximum amounts were 2652 µg/kg and 481 µg/kg, respectively), as well as with BEA (maximum amount was 49 µg/kg) was typical for barley and oat grain samples. The content of MON (maximum amount was 50 µg/kg) in the grain of three different small grain cereals was similar.


Subject(s)
Fusarium , Mycotoxins , Mycotoxins/analysis , Edible Grain/microbiology , Tandem Mass Spectrometry , Food Contamination/analysis , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL