Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Mol Genet ; 22(20): 4084-101, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23736298

ABSTRACT

Spinal muscular atrophy (SMA) is caused by insufficient levels of the survival motor neuron (SMN) protein due to the functional loss of the SMN1 gene and the inability of its paralog, SMN2, to fully compensate due to reduced exon 7 splicing efficiency. Since SMA patients have at least one copy of SMN2, drug discovery campaigns have sought to identify SMN2 inducers. C5-substituted quinazolines increase SMN2 promoter activity in cell-based assays and a derivative, RG3039, has progressed to clinical testing. It is orally bioavailable, brain-penetrant and has been shown to be an inhibitor of the mRNA decapping enzyme, DcpS. Our pharmacological characterization of RG3039, reported here, demonstrates that RG3039 can extend survival and improve function in two SMA mouse models of varying disease severity (Taiwanese 5058 Hemi and 2B/- SMA mice), and positively impacts neuromuscular pathologies. In 2B/- SMA mice, RG3039 provided a >600% survival benefit (median 18 days to >112 days) when dosing began at P4, highlighting the importance of early intervention. We determined the minimum effective dose and the associated pharmacokinetic (PK) and exposure relationship of RG3039 and DcpS inhibition ex vivo. These data support the long PK half-life with extended pharmacodynamic outcome of RG3039 in 2B/- SMA mice. In motor neurons, RG3039 significantly increased both the average number of cells with gems and average number of gems per cell, which is used as an indirect measure of SMN levels. These studies contribute to dose selection and exposure estimates for the first studies with RG3039 in human subjects.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Motor Neurons/drug effects , Motor Neurons/pathology , Muscular Atrophy, Spinal/physiopathology , Quinazolines/pharmacology , Quinazolines/pharmacokinetics , Survival of Motor Neuron 2 Protein/metabolism , Administration, Oral , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Endoribonucleases/metabolism , Female , Humans , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/drug therapy , Quinazolines/therapeutic use , Survival of Motor Neuron 2 Protein/genetics , Synapses/drug effects , Synapses/physiology
2.
J Neurosci ; 32(11): 3818-29, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423102

ABSTRACT

The loss of motor neurons (MNs) is a hallmark of the neuromuscular disease spinal muscular atrophy (SMA); however, it is unclear whether this phenotype autonomously originates within the MN. To address this question, we developed an inducible mouse model of severe SMA that has perinatal lethality, decreased motor function, motor unit pathology, and hyperexcitable MNs. Using an Hb9-Cre allele, we increased Smn levels autonomously within MNs and demonstrate that MN rescue significantly improves all phenotypes and pathologies commonly described in SMA mice. MN rescue also corrects hyperexcitability in SMA motor neurons and prevents sensory-motor synaptic stripping. Survival in MN-rescued SMA mice is extended by only 5 d, due in part to failed autonomic innervation of the heart. Collectively, this work demonstrates that the SMA phenotype autonomously originates in MNs and that sensory-motor synapse loss is a consequence, not a cause, of MN dysfunction.


Subject(s)
Motor Neurons/pathology , Muscular Atrophy, Spinal/pathology , Sensory Receptor Cells/pathology , Animals , Animals, Newborn , Female , Male , Mice , Mice, Transgenic , Motor Neurons/physiology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/physiopathology , Neuromuscular Junction/pathology , Neuromuscular Junction/physiology , Sensory Receptor Cells/physiology
3.
Neurobiol Dis ; 43(1): 142-51, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21396450

ABSTRACT

The SMN2 transgenic mouse, Tg(SMN2)89Ahmb, has emerged as the most widely used in spinal muscular atrophy (SMA) research. Here we clone the genomic integration site of the transgene and demonstrate it to be in intron 4 of the metabotropic glutamate receptor 7 (mGluR7) gene. We found that the integration of this transgene significantly reduced both mGluR7 mRNA and protein levels (24% and 9%, respectively). To determine if phenotypes associated with mGluR7 knockout mice were present in Tg(SMN2)89Ahmb containing mice, we subjected mice homozygous for the transgene to open field and seizure susceptibility tests. When compared to wild type FVB/N mice, Tg(SMN2)89Ahmb(tg/tg) mice exhibited significantly longer times in finding a safe wall-adjacent square (+54s if Smn(+/+), +90s if Smn(+/-)), as well as a significantly higher frequency of generalized seizure in response to a subthreshold dose of pentylenetrazol (0.11 vs 0.45). These findings aid in explaining the sudden unexpected death that occurs within SMA mouse colonies that contain a homozygous Tg(SMN2)89Ahmb transgene. This should be taken into account in pre-clinical studies that utilize this transgene, especially in therapy-treated SMA mice that have extended survival.


Subject(s)
Epilepsy/genetics , Fear , Muscular Atrophy, Spinal/genetics , Receptors, Metabotropic Glutamate/genetics , Animals , Disease Models, Animal , Epilepsy/etiology , Epilepsy/psychology , Fear/psychology , Genetic Predisposition to Disease/genetics , Genome/genetics , Integration Host Factors/genetics , Introns/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscular Atrophy, Spinal/etiology , Muscular Atrophy, Spinal/psychology , Survival Analysis , Transgenes/genetics
4.
PLoS One ; 5(9)2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20844742

ABSTRACT

BACKGROUND: CPD1 (also known as ANP32-E) belongs to a family of evolutionarily conserved acidic proteins with leucine rich repeats implicated in a variety of cellular processes regulating gene expression, vesicular trafficking, intracellular signaling and apoptosis. Because of its spatiotemporal expression pattern, CPD1 has been proposed to play an important role in brain morphogenesis and synaptic development. METHODOLOGY/PRINCIPAL FINDINGS: We have generated CPD1 knock-out mice that we have subsequently characterized. These mice are viable and fertile. However, they display a subtle neurological clasping phenotype and mild motor deficits. CONCLUSIONS/SIGNIFICANCE: CPD1 is not essential for normal development; however, it appears to play a role in the regulation of fine motor functions. The minimal phenotype suggests compensatory biological mechanisms.


Subject(s)
Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nervous System Diseases/physiopathology , Animals , Cell Line , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones , Motor Activity , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Phenotype , Reproduction
5.
Biochem Biophys Res Commun ; 391(1): 517-22, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19961830

ABSTRACT

Proximal spinal muscular atrophy (SMA) results from loss of the survival motor neuron 1 (SMN1) gene, with retention of its nearly identical homolog, SMN2. There is a direct correlation between disease severity and SMN2 copy number. Mice do not have a Smn2 gene, and thus cannot naturally replicate the disorder. However, two murine models of SMA have been generated using SMN2-BAC transgenic mice bred onto a mutant Smn background. In these instances mice die shortly after birth, have variable phenotypes within the same litter, or completely correct the SMA phenotype. Both models have been imported to The Jackson Laboratory for distribution to the research community. To ensure that similar results are obtained after importation to The Jackson Laboratory to what was originally reported in the literature, we have begun a molecular and phenotypic evaluation of these mouse models. Here we report our findings for the SMA mouse model that has been deposited by the Li group from Taiwan. These mice, JAX stock number TJL-005058, are homozygous for the SMN2 transgene, Tg(SMN2)2Hung, and a targeted Smn allele that lacks exon 7, Smn1(tm1Hung). Our findings are consistent with those reported originally for this line and clarify some of the original data. In addition, we have cloned and mapped the integration site for Tg(SMN2)2Hung to Chromosome 4, and provide a simple genotyping assay that is specific to the junction fragment. Finally, based upon the survival data from our genetic crosses, we suggest that this underused SMA model may be a useful compliment or alternative to the more commonly used "delta7" SMA mouse. We provide breeding schemes in which two genotypes of mice can be generated so that 50% of the litter will be SMA-like pups while 50% will be controls.


Subject(s)
Disease Models, Animal , Mice , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Animals , Base Sequence , Heterozygote , Humans , Mice, Knockout , Mice, Neurologic Mutants , Mice, Transgenic , Molecular Sequence Data , Mutation , Phenotype , Survival of Motor Neuron 2 Protein/genetics
6.
PLoS One ; 5(12): e15887, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21249120

ABSTRACT

Spinal muscular atrophy (SMA) is caused by low survival motor neuron (SMN) levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2) gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, Smn(C-T-Neo) and Smn(2B-Neo). These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.


Subject(s)
Alternative Splicing , Mutation , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Alleles , Animals , Exons , Female , Fibroblasts/cytology , Homozygote , Integrases/genetics , Introns , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction
7.
Hum Mol Genet ; 17(8): 1063-75, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18178576

ABSTRACT

Spinal muscular atrophy (SMA) is caused by loss of the survival motor neuron gene (SMN1) and retention of the SMN2 gene. The copy number of SMN2 affects the amount of SMN protein produced and the severity of the SMA phenotype. While loss of mouse Smn is embryonic lethal, two copies of SMN2 prevents this embryonic lethality resulting in a mouse with severe SMA that dies 5 days after birth. Here we show that expression of full-length SMN under the prion promoter (PrP) rescues severe SMA mice. The PrP results in high levels of SMN in neurons at embryonic day 15. Mice homozygous for PrP-SMN with two copies of SMN2 and lacking mouse Smn survive for an average of 210 days and lumbar motor neuron root counts in these mice were normal. Expression of SMN solely in skeletal muscle using the human skeletal actin (HSA) promoter resulted in no improvement of the SMA phenotype or extension of survival. One HSA line displaying nerve expression of SMN did affect the SMA phenotype with mice living for an average of 160 days. Thus, we conclude that expression of full-length SMN in neurons can correct the severe SMA phenotype in mice. Furthermore, a small increase of SMN in neurons has a substantial impact on survival of SMA mice while high SMN levels in mature skeletal muscle alone has no impact.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Muscular Atrophy, Spinal/genetics , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , Animals , Embryo, Mammalian/metabolism , Gene Dosage , Gene Expression , Humans , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/physiopathology , Neurons , Promoter Regions, Genetic , SMN Complex Proteins , Survival Analysis , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein
8.
J Child Neurol ; 22(8): 1013-8, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17761657

ABSTRACT

Proximal spinal muscular atrophy is caused by deletion or mutation of the survival motor neuron 1 gene, SMN1. Rentention of a nearly identical copy gene, SMN2, enables survival but is unable to fully compensate for the loss of SMN1. The SMN1 and SMN2 genes differ by a single nucleotide that results in alternative splicing of SMN2 exon 7 due to the disruption of a binding site for an essential splicing factor. This alternatively spliced form encodes a partially functional truncated protein. Because SMN2 is present in patients with spinal muscular atrophy, it is an ideal therapeutic target. Some of the current approaches to increase SMN protein levels are aimed at increasing the transcription from SMN2 or at preventing exon 7 skipping. One area that has yet to be investigated is the stability of messenger ribonucleic acid (RNA) transcripts produced from SMN2. We postulated that transcripts derived from SMN2 may be less stable because alternative splicing, recruitment of RNA-binding proteins, and alteration of stop codons have been associated with changes in rates of messenger RNA decay; these features are all characteristic of SMN2. Accordingly, transcript degradation was examined within primary fibroblast cells that exclusively contained SMN1 or SMN2 by treating cultures with a transcriptional inhibitor to observe messenger RNA stability. The results indicate that SMN transcript instability does not play a role in the disease mechanism, suggesting that therapeutic modulation of messenger RNA degradation would not target a molecular defect in patients with spinal muscular atrophy, although it could provide general benefits by increasing total pools of SMN2 transcripts.


Subject(s)
Cyclic AMP Response Element-Binding Protein/biosynthesis , Cyclic AMP Response Element-Binding Protein/genetics , Muscular Atrophy, Spinal/genetics , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , RNA Stability/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Dosage/genetics , Genetic Predisposition to Disease/genetics , Humans , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/therapy , Nerve Tissue Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , SMN Complex Proteins , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL