Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Nat Prod ; 85(3): 485-492, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35029996

ABSTRACT

A new cyclic depsipeptide, triproamide (1), containing the rare 4-phenylvaline (dolaphenvaline, Dpv) and a ß-amino acid, dolamethylleucine (Dml), originally found in dolastatin 16, was isolated from the polar VLC-derived fraction of the extracts prepared from the marine cyanobacterium Symploca hydnoides. Triproamide (1) was isolated along with the known molecule kulokainalide-1 (2), as well as its two new analogues, pemukainalides A (3) and B (4). Their planar structures were elucidated based on extensive NMR and mass spectrometric data. The absolute and relative configurations of the compounds were determined utilizing a combination of Marfey's method, J-based configuration, and chiral-phase HPLC analyses. Kulokainalide-1 (2) and pemukainalide A (3) exhibited cytotoxicity against the MOLT-4 leukemia cell line with IC50 values of 5.9 and 5.6 µM, respectively.


Subject(s)
Cyanobacteria , Depsipeptides , Amino Acids , Cyanobacteria/chemistry , Depsipeptides/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Peptides, Cyclic
2.
Mar Drugs ; 19(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34677447

ABSTRACT

Three new cyanobactins, trikoramides B (1)-D (3), have been isolated from the marine cyanobacterium, Symploca hydnoides, following a preliminary bioassay-guided isolation of the two most active polar fractions based on the brine shrimp toxicity assay. These new cyanobactins are new analogues of the previously reported cytotoxic trikoramide A (4) with differences mainly in the C-prenylated cyclotryptophan unit. Their planar structures were elucidated from their 1D and 2D NMR spectral data in combination with the HRMS/MS data. Marfey's method, 2D NOESY NMR spectroscopic and ECD spectra analyses were used to determine the absolute stereochemistry of trikoramides B (1)-D (3). Trikoramides B (1) and D (3) exhibited cytotoxicity against MOLT-4 acute lymphoblastic leukemia cell line with IC50 values of 5.2 µM and 4.7 µM, respectively. Compounds 1 and 3 were also evaluated for their quorum-sensing inhibitory assay based on the Pseudomonas aeruginosa PAO1 lasB-gfp and rhlA-gfp bioreporter strains. Although trikoramide B (1) exhibited weak quorum-sensing inhibitory activity, the Br-containing trikoramide D (3) exhibited moderate to significant dose-dependent quorum-sensing inhibitory activities against PAO1 lasB-gpf and rhlA-gfp bioreporter strains with IC50 values of 19.6 µM and 7.3 µM, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Cyanobacteria , Peptides, Cyclic/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Aquatic Organisms , Artemia/drug effects , Cell Line, Tumor , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Peptides, Cyclic/chemistry , Pseudomonas aeruginosa/drug effects
3.
Front Microbiol ; 12: 631445, 2021.
Article in English | MEDLINE | ID: mdl-34267732

ABSTRACT

Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.

4.
Phytochemistry ; 190: 112879, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34271298

ABSTRACT

Trikoveramides A - C, members of the kulolide superfamily of cyclic depsipeptides, were isolated from the marine cyanobacterium, Symploca hydnoides, collected from Bintan Island, Indonesia. Their planar structures were elucidated by a combination of NMR spectroscopy and HRMS spectral data. The absolute configurations of the amino acid and phenyllactic acid units were confirmed by Marfey's and chiral HPLC analyses, respectively, while the relative stereochemistry of the 3-hydroxy-2-methyl-7-octynoic acid (Hmoya) unit in trikoveramide A was elucidated by the application of the J-based configuration analysis and NOE correlations. The cytotoxic activity of the trikoveramides were evaluated against MOLT-4 human leukemia cells and gave IC50 values of 9.3 µM, 35.6 µM and 48.8 µM for trikoveramide B, trikoveramide C and trikoveramide A, respectively. In addition, trikoveramides A - C showed weak to moderate inhibition in the quorum sensing inhibitory assay based on the Pseudomonas aeruginosa lasB-gfp and rhlA-gfp bioreporter strains.


Subject(s)
Cyanobacteria , Depsipeptides , Depsipeptides/pharmacology , Drug Screening Assays, Antitumor , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Peptides, Cyclic
5.
J Nat Prod ; 82(12): 3482-3488, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31763840

ABSTRACT

A new cyclic decapeptide, trikoramide A (1), has been isolated from samples of the marine cyanobacterium Symploca hydnoides, collected from Bintan Island, Indonesia. Trikoramide A (1) is a C-prenylated cyclotryptophan-containing cyanobactin. Its planar structure was deduced by 1D and 2D NMR spectroscopy as well as HR-MS/MS data. In addition, its absolute configuration was determined by Marfey's method and 2D NOESY NMR spectroscopic analysis. Compound 1 possessed cytotoxicity against the MOLT-4 and AML2 cancer cell lines with IC50 values of 4.8 and 8.2 µM, respectively.


Subject(s)
Antineoplastic Agents/isolation & purification , Cyanobacteria/metabolism , Seawater/microbiology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Prenylation , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL