Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731565

ABSTRACT

The qualitative impact of pollutants on water quality is mainly related to their nature and their concentration, but in any case, they determine a strong impact on the involved ecosystems. In particular, refractory organic compounds represent a critical challenge, and several degradation processes have been studied and developed for their removal. Among them, heterogeneous Fenton treatment is a promising technology for wastewater and liquid waste remediation. Here, we have developed mono- and bimetallic formulations based on Co, Cu, Fe, and Mn, which were investigated for the degradation of three model organic dyes (methylene blue, rhodamine B, and malachite green). The treated samples were then analyzed by means of UV-vis spectrophotometry techniques. Bimetallic iron-based materials achieved almost complete degradation of all three model molecules in very short time. The Mn-Fe catalyst resulted in the best formulation with an almost complete degradation of methylene blue and malachite green at pH 5 in 5 min and of rhodamine B at pH 3 in 30 min. The results suggest that these formulations can be applied for the treatment of a broad range of liquid wastes comprising complex and variable organic pollutants. The investigated catalysts are extremely promising when compared to other systems reported in the literature.

2.
Environ Sci Pollut Res Int ; 30(8): 21025-21032, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36264469

ABSTRACT

Landfill leachates are highly contaminated liquid waste, and their treatment and detoxification are a challenging task. The current system of ecotoxicological risk assessment is complex and time-consuming. It is of fundamental importance to develop simpler and faster tools for the evaluation of the treated liquid waste and for an easier preliminary screening of the most active catalytic formulation/reaction conditions of the Fenton-like process. Here, several analytical techniques have been used for the assessment of the reduction of toxicity of the landfill leachate after Fenton process over copper-zirconia catalyst (ZrCu). Ultraviolet-visible (UV-vis) spectroscopy and absorbable organic halogens (AOX) analysis have been coupled to achieve further insight into the degradation of contaminants. In addition, for the first time, the qualitative abatement of organic compounds is monitored through proton nuclear magnetic resonance (1H NMR) analysis, providing a new method for evaluating the effectiveness of the treatment. Spectroscopic techniques reveal that the Fenton process induces a significant abatement of the aromatic and halogen compounds (51%) in the landfill leachate with a reduction of the toxicity that has been confirmed by ecotoxicological test with algae. These results validate the investigated tool for a simple rapid preliminary evaluation of the detoxification efficacy.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry , Organic Chemicals , Oxidation-Reduction
3.
Environ Pollut ; 296: 118755, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34971741

ABSTRACT

Water shortages are an issue of growing worldwide concern. Irrigated agriculture accounts for about 70% of total freshwater withdrawals globally, therefore alternatives to use of conventional sources need to be investigated. This paper critically reviews the application of treated wastewater for agricultural fertigation (i.e., water and nutrient recovery) considering different perspectives: legislation, agronomic characteristics, social acceptability, sustainability of treatment technologies. Critical issues that still need further investigation for a wider application of fertigation practices include accumulation of emerging contaminants in soils, microbiological and public health implications, and stakeholders' acceptance. A techno-economic methodological approach for assessing the sustainability of treated wastewater reuse in agriculture is subsequently proposed herein, which considers different possible local conditions (cultivated crops and effluent characteristics). The results showed that tailoring effluent characteristics to the desired nutrient composition could enhance the process economic sustainability; however, water savings have a major economic impact than fertilizers' savings, partly due to limited P reuse efficiency. The developed methodology is based on a practical approach and may be generalized to most agricultural conditions, to evaluate and encourage safe and efficient agricultural wastewater reuse practices.


Subject(s)
Wastewater , Water Purification , Agriculture , Waste Disposal, Fluid , Water , Water Supply
4.
Sci Total Environ ; 798: 149283, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34375248

ABSTRACT

Despite providing important ecological functions, seagrass accumulation causes environmental and economic issues, including eutrophication and tourism reduction. Nowadays, seagrass wrack is commonly removed from the beaches and landfilled, which is considered the least desirable practice according to the European Union (EU) Waste Framework Directive. In this study, different management strategies for seagrass valorisation, including anaerobic digestion (AD), composting and ecological restoration, were considered using a life cycle assessment (LCA) perspective. The aim of the work was to evaluate more ecological and economic alternatives to landfill and to provide a robust evaluation method for public and private companies. An economic assessment was subsequently conducted, considering both direct and indirect impacts with a life cycle costing (LCC) approach. A selected beach located in the Northeast Mediterranean Sea was considered as a relevant case-study. The environmental impacts of the seagrass management scenarios were evaluated with the method ReCiPe 2016H, using both midpoint and endpoint levels. LCA results showed that ecological restoration and AD were the best alternatives in terms of environmental performances because of biogas production used as a renewable energy source. The impacts of the alternative management strategies were significantly lower than the current landfill strategy, -70% considering the categories of human health, ecosystems and resources, and -95% considering global warming potential category. The LCC analysis proved that composting was the best alternative (NPV > 1.27 M€), due to lower operating costs and higher fertilizer value. The obtained results can help beach management companies and public administrations to select the best operational strategies to reduce the environmental and economic impact of seagrass collection and treatment.


Subject(s)
Composting , Refuse Disposal , Waste Management , Animals , Biofuels , Ecosystem , Humans , Life Cycle Stages , Waste Disposal Facilities
5.
Sci Total Environ ; 793: 148607, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34182438

ABSTRACT

Respirometry tests are a widely employed method in wastewater treatment field to characterize wastewater streams, assess toxic/inhibitory effects to the biomass, calibrate mathematical models. Respirometry can allow to fractionize the chemical oxygen demand (COD) in biodegradable and inert fractions, but also provide information related to biomass kinetics and stoichiometry through standardized laboratory techniques. Considering the increasing number of emerging contaminants detected in wastewater effluents, such as pharmaceuticals, personal care products and pesticides, respirometry can be a useful tool to promptly assess any toxic or inhibitory effect in wastewater treatment plants (WWTPs) operations. Beside conventional activated sludge (CAS), in recent years respirometric methods have been applied to innovative fields, such as moving-bed bio-reactors (MBBRs), fungi and microalgae, exploiting natural remediation methods. In particular, respirometry application to microalgae, through the so-called photo-respirometry, has been investigated in the latest years in the treatment of high-nutrient loaded streams, allowing resource recovery in biomass form. In this work, respirometric methods are first introduced from a theoretical basis and then critically discussed by considering the experimental apparatus, the available characterization protocols and the fields of application; the most recent literature findings on respirometry are coupled with authors' experience in the field. A comparison between physicochemical methods and respirometry is made, considering common protocols for WWTP modelling and calibration. The future research needed on the topic is finally outlined, including the coupling of respirometry with microbial community analysis, potentially leading to an enhanced process understanding, an extended respirometry utilization to get specific kinetic and stoichiometric parameters for modelling purposes, and a wider respirometry application as diagnosis tool in WWTP operations.


Subject(s)
Wastewater , Water Purification , Biological Oxygen Demand Analysis , Bioreactors , Oxygen , Sewage , Waste Disposal, Fluid
6.
Environ Sci Pollut Res Int ; 28(1): 700-710, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32820435

ABSTRACT

The present work is a preliminary study on the potential of low-frequency ultrasound irradiation coupled with O3 process for the disinfection of a primary effluent from a municipal wastewater treatment plant preserving nutrient levels (in particular nitrogen and phosphorous), for its possible reuse in civil, industrial, and agricultural sectors. The treated water could be reused, after appropriate dilution, contributing to the circular economy perspective and reducing the need for both chemical fertilizer addition and freshwater supply. The effect of different specific ultrasonic energies and ozone doses was assessed on a bench-top system, composed of an ultrasonic reactor and a semi-batch ozonation vessel. The results showed that the combined US-O3 process produces a good removal efficiency regarding soluble Chemical Oxygen Demand, sCOD (ca. 60%), anionic surfactants (ca. 50%), and formaldehyde (ca. 50%), and an optimal abatement for Methylene Blue Active Substances (MBAS, > 90%). The process also reached high disinfection performances, obtaining 4 logs for E. coli and 5 log abatement for Total Coliforms. The high removal efficiency is matched by an outstanding retention of nutrients (total nitrogen and orthophosphate) highlighting a high potential value for agricultural reuse of the treated primary effluent, with possible significant saving of chemical fertilizers. It was concluded that low-frequency ultrasound pre-treatment, combined with ozonation, could be a useful process for primary effluent recovery for several purposes. Further studies are expected to be planned and executed to evaluate system scale-up feasibility.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Escherichia coli , Wastewater , Water Pollutants, Chemical/analysis
7.
Environ Monit Assess ; 192(6): 374, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32417975

ABSTRACT

Rainfall-runoff models must be calibrated and validated before they can be used for urban stormwater management. Manual calibration is very difficult and time-consuming due to the large number of model parameters that must be estimated concurrently. Automatic calibration offers as a promising alternative, ideally supporting a user-independent and time-efficient approach to model parameters estimation. In this article, we test the use of a state-of-the-art standard package (PEST, Parameter ESTimation, http://www.pesthomepage.org/) for the automatic calibration of a rainfall-runoff EPA-SWMM (Storm Water Management Model) model developed for a small suburban catchment. Results reported in the paper demonstrate that the performance of automatically calibrated models still depends on a number of user-dependent choices (the level of catchment discretization, the selection of significant parameters, the optimization techniques adopted). Through a systematic analysis of the results, we try to identify the guidelines for the effective use of automatic calibration procedures based on modeling assumptions and target of the analysis.


Subject(s)
Environmental Monitoring , Rain , Water Movements , Calibration , Models, Theoretical
8.
Bioengineering (Basel) ; 7(2)2020 May 10.
Article in English | MEDLINE | ID: mdl-32397582

ABSTRACT

Up-flow anaerobic sludge blanket (UASB) reactor belongs to high-rate systems, able to perform anaerobic reaction at reduced hydraulic retention time, if compared to traditional digesters. In this review, the most recent advances in UASB reactor applications are critically summarized and discussed, with outline on the most critical aspects for further possible future developments. Beside traditional anaerobic treatment of soluble and biodegradable substrates, research is actually focusing on the treatment of refractory and slowly degradable matrices, thanks to an improved understanding of microbial community composition and reactor hydrodynamics, together with utilization of powerful modeling tools. Innovative approaches include the use of UASB reactor for nitrogen removal, as well as for hydrogen and volatile fatty acid production. Co-digestion of complementary substrates available in the same territory is being extensively studied to increase biogas yield and provide smooth continuous operations in a circular economy perspective. Particular importance is being given to decentralized treatment, able to provide electricity and heat to local users with possible integration with other renewable energies. Proper pre-treatment application increases biogas yield, while a successive post-treatment is needed to meet required effluent standards, also from a toxicological perspective. An increased full-scale application of UASB technology is desirable to achieve circular economy and sustainability scopes, with efficient biogas exploitation, fulfilling renewable energy targets and green-house gases emission reduction, in particular in tropical countries, where limited reactor heating is required.

9.
J Environ Manage ; 246: 557-563, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31202020

ABSTRACT

In Friuli-Venezia Giulia plain (North-East of Italy), a significant number of small diaries is present; this study was aimed at evaluating technical and economic feasibility of diffused anaerobic digestion implementation at dairy level. Different kinds of cheese whey were characterized, and biochemical methane potential tests were executed. Good methane yields (up to 437.3 NmL CH4/g VSadded) were obtained, applying an inoculum-to-substrate ratio of 6. Ultrasound pre-treatment was investigated to evaluate an eventual increase in methane production and kinetics, varying applied ultrasonic energy: significant increases in methane yield (maximum +16.0%) and CH4 production kinetics (up to +46% increase after 3 days) were obtained at low ultrasonic energy of 251.4-693.7 Wh/kg VS, while at higher ultrasonic energy of 502.8-1387.5 Wh/kg VS no significant effect was visible. Energy consumption in selected dairies was analysed, to underline the impact of anaerobic digestion implementation on electric and thermal energy need, and it was concluded that through cheese whey anaerobic digestion it is possible to cover most of the dairies energy demand. Specific electric and thermal energy consumption were evaluated to be respectively in the range of 0.009-0.133 kWh/kg milk and 0.247-0.557 MJ/kg milk, while specific energy costs were calculated as 0.0079-0.0308 €/kg milk. For each analysed plant, digester volume to install and organic loading rate were hypothesized.


Subject(s)
Cheese , Whey , Anaerobiosis , Biofuels , Bioreactors , Feasibility Studies , Italy , Methane
10.
Environ Int ; 119: 275-286, 2018 10.
Article in English | MEDLINE | ID: mdl-29982131

ABSTRACT

Contaminants giving rise to emerging concern like pharmaceuticals, personal care products, pesticides and Endocrine Disrupting Chemicals (EDCs) have been detected in wastewaters, as reported in the literature, but little is known about their (eco)toxicological effects and consequent human health impact. The present study aimed at overcoming this lack of information through the use of in silico methods integrated with traditional toxicological risk analysis. This is part of a pilot project involving the management of wastewater treatment plants in the Ledra River basin (Italy). We obtained data to work up a global risk assessment method combining the evaluations of health risks to humans and ecological receptors from chemical contaminants found in this specific area. The (eco)toxicological risk is expressed by a single numerical value, permitting the comparison of different sampling sites and the evaluation of future environmental and technical interventions.


Subject(s)
Computer Simulation , Ecotoxicology/methods , Environmental Monitoring/methods , Risk Assessment/methods , Humans , Italy , Rivers , Topography, Medical , Wastewater , Water Pollutants, Chemical
11.
Waste Manag ; 49: 47-54, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26739455

ABSTRACT

Anaerobic codigestion of source selected organic fraction of municipal solid waste (SS-OFMSW) and sewage sludge may be one of the most viable solutions to optimize oversized digesters efficiency in wastewater treatment plants. Based on results of BMP tests obtained for sewage sludge and SS-OFMSW, pilot plant tests were carried out by 3.4 m(3) CSTR reactor at mesophilic temperature. A mix of fruit and vegetable waste from wholesale market and canteen waste was used as SS-OFMSW substrate. Tests were conducted applying an OLR (organic loading rate) ramp with 6 different phases until a value of 3.2 kgVS/m(3) d. Feedstock and digestate characteristics, efficiency and process parameters were monitored. The anaerobic codigestion development was stable in each phase: early indicators like VFA (volatile fatty acids) and FOS/TAC ratio were always below instability threshold values. The maximum OLR tested determined a GPR (gas production rate) of 0.95 N m(3)/m(3) d and SGP (specific gas production) of 0.49 N m(3)/kgVS with a VS abatement of 67.3%.


Subject(s)
Refuse Disposal/methods , Sewage , Solid Waste , Ammonia/metabolism , Anaerobiosis , Biofuels , Biological Oxygen Demand Analysis , Bioreactors , Carbon/metabolism , Fruit , Italy , Metals, Heavy/analysis , Nitrogen/metabolism , Pilot Projects , Refuse Disposal/instrumentation , Temperature , Vegetables
12.
ScientificWorldJournal ; 2014: 590961, 2014.
Article in English | MEDLINE | ID: mdl-24550715

ABSTRACT

Rheological behaviour of recycled sludge from a secondary clarifier of a municipal wastewater treatment plant was studied by using the rate controlled coaxial cylinder viscometer Rotovisko-Haake 20, system M5-osc., measuring device NV. The tests (hysteresis cycles) were performed under continuous flow conditions and following an ad hoc measurement protocol. Sludge shear stress versus shear rate curves were fitted very satisfactorily by rheological models. An experimental equation correlating the solid concentration of sludge to relative viscosity and fitting satisfactorily flow curves at different Total Suspended Solids (TTS%) was obtained. Application of the empirical correlation should allow the monitoring of the proper functioning of a wastewater treatment plant measuring viscosity of sludge.


Subject(s)
Bioreactors , Rheology , Sewage , Waste Disposal Facilities , Wastewater , Humans , Models, Theoretical , Rheology/methods
13.
Waste Manag ; 33(7): 1626-32, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23628216

ABSTRACT

The aim of this study is to characterize different types of source selected organic fraction of municipal solid waste (SS-OFMSW) in order to optimize the upgrade of a sewage sludge anaerobic digestion unit by codigestion. Various SS-OFMSW samples were collected from canteens, supermarkets, restaurants, households, fruit-vegetable markets and bakery shops. The substrates characterization was carried out getting traditional chemical-physical parameters, performing elemental analysis and measuring fundamental anaerobic digestion macromolecular compounds such as carbohydrates, proteins, lipids and volatile fatty acids. Biochemical methane potential (BMP) tests were conducted at mesophilic temperature both on single substrates and in codigestion regime with different substrates mixing ratios. The maximum methane yield was observed for restaurant (675 NmlCH4/gVS) and canteens organic wastes (571 and 645 NmlCH4/gVS). The best codigestion BMP test has highlighted an increase of 47% in methane production respect sewage sludge digestion.


Subject(s)
Methane/biosynthesis , Refuse Disposal/methods , Sewage , Solid Waste/analysis , Anaerobiosis , Biological Oxygen Demand Analysis , Family Characteristics , Fruit , Sewage/microbiology , Temperature , Vegetables
14.
Sci Total Environ ; 441: 10-8, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23134765

ABSTRACT

The aim of this study was to measure and compare methane oxidation rates of arable and grassland soils that received 7.5t ha⁻¹ y⁻¹ of noncontaminated aerobically treated sewage sludge for ten years. Arable soils showed generally lower methane oxidation rates (from 6 to 15∗10⁻³ h⁻¹) than grassland soils (from 26 to 33∗10³ h⁻¹). Oxidation rate constants (k) of soils amended with sewage sludge were remarkably close to their respective untreated controls, but a soil, that had received a tenfold sewage sludge application (i.e. 75 t ha⁻¹ y⁻¹), showed a statistically significantly higher k-value. Laboratory addition of up to 1000 mg Pb g⁻¹ soil to this soil did not cause any significant change in methane oxidation, but caused a decrease from 13.9 to 10.9×10⁻³ h⁻¹ in the control soil. Addition of Zn was much more toxic than Pb, with a significant decrease at 300 µg g⁻¹ soil rate and an almost complete inhibition at 1500 µg g⁻¹ soil rate. Higher resistance was evident of sewage sludge treated soil in comparison to control soil, for both biomass C and CH4 oxidation activity.


Subject(s)
Bacteria/metabolism , Methane/metabolism , Sewage , Soil Microbiology , Soil Pollutants/metabolism , Bacteria/drug effects , Biomass , Environmental Monitoring , Italy , Lead/metabolism , Lead/toxicity , Oxidation-Reduction , Soil Pollutants/toxicity , Time Factors , Zinc/metabolism , Zinc/toxicity
15.
J Hazard Mater ; 193: 177-82, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21813235

ABSTRACT

In this study, we tested a new procedure for the decontamination of mercury-polluted dredging sludge (Marano-Grado Lagoon, northeastern Italy) based on cationic exchange associated with thermal desorption at a low temperature. Four mercury-polluted sludge slurries were treated using thermal desorption at 393 K for 2h. Three different salts, NaCl (sodium chloride), (CH(3))(4)NCl (tetramethylammonium chloride) and (C(4)H(9))(4)NCl (tetrabutylammonium chloride) were used as exchangers. The selected salts have a monovalent cationic part that progressively increases in molecular weight. The results show that the association of cationic exchange with thermal treatment leads to a significant improvement in the removal of mercury from the contaminated material at a low temperature compared to samples that were not treated with salt. The highest levels of decontamination were attained were obtained when the slurries, which had mercury pollution ranging from 20 to 200 ppm, were treated with a 15% solution of (C(4)H(9))(4)NCl. The efficiency of the removal at 393 K (from 24% up to 60%) depended on the nature of the sample. When the samples were treated at a similar temperature without the salt, no remediation of mercury was detected. Our results show that the thermal decontamination temperature can be significantly lowered by this remediation approach, which is the first example based on cationic exchange of the pollutant with an appropriate salt.


Subject(s)
Mercury/isolation & purification , Sewage , Water Pollutants, Chemical/isolation & purification , Italy
16.
J Hazard Mater ; 171(1-3): 647-53, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19586719

ABSTRACT

A series of ultrasonic assisted acid washing and thermal desorption tests were performed on sludge and other solid matrices with the aim to assay these removal technologies and to determine if the application of low frequency ultrasound was effective to enhance mercury removal. Unpolluted dredging sludge, 820 K calcinated dredging sludge, silica and alumina were characterized, polluted with a known concentration of mercury and treated both by acid washing and thermal desorption with and without low frequency ultrasound application. The acid washing was carried out by a 4% HNO(3) acid solution and the thermal desorption was performed in a 370-620K range. X-ray semi-quantitative analysis of dredging sludge before and after acid washing and granulometric curves of the matrices after the ultrasonic treatment were considered in order to evidence chemical or physical changes during these treatments. Total residual mercury measurements were carried out before and after sonication. Results showed not measurable acid washing extraction from polluted dredging sludge, a little (3%) extraction from 820K heat-treated sludge and a significant (10-20%) extraction from alumina and silica within 120 min of treatment. The ultrasound application gave generally poor improvement of the mercury removal. On the contrary thermal desorption of mercury was somewhat effective for alumina, silica and heat-treated dredging sludge samples in which mercury removal was 30-40% at 370 K and 90-99% at 570 K. Likewise ultrasound application did not improve desorption. Instead, the thermal treatment of dredging sludge had a negligible amount of mercury desorption at 370 K but it reached 95% at 570 K. The application of ultrasound improved the thermal extraction of 25% in the 470-520 K range of temperature.


Subject(s)
Mercury/isolation & purification , Sewage/chemistry , Ultrasonics , Waste Disposal, Fluid/methods , Water Purification/methods , Acids/chemistry , Adsorption , Environmental Monitoring/methods , Equipment Design , Hot Temperature , Industrial Waste , Mercury/analysis , Refuse Disposal/methods , Temperature , Water Pollutants, Chemical
17.
Waste Manag ; 26(2): 167-75, 2006.
Article in English | MEDLINE | ID: mdl-15905082

ABSTRACT

The monitoring of extractable organic halogen (EOX) and heavy metal contents in sludge coming from 10 different municipal wastewater treatment plants (MWWTP) located in Friuli Venezia Giulia (Italy) is reported. In this work, sludge samples drawn from sludge treatment units have been digested and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for metal evaluation. Samples were also extracted and analyzed by microcoulometric titrations, following modified DIN 38414 T17 standard, for EOX analysis. Analytical results showed a slight enrichment of the contents of certain metals (Cd< 2mg/kg, Cr< 51.5mg/kg, Cu<105.8 mg/kg, Hg<1.4 mg/kg, Ni<35.9 mg/kg, Pb<58.7 mg/kg, Zn<410.1 mg/kg, Ba<317.1 mg/kg, Co<1 mg/kg, Mo< 5 mg/kg, Mn<106.7 mg/kg), so almost all of the sludge would be suitable for agricultural use following Italian and European regulations. The evaluation of EOX was carried out by using hexane and ethyl acetate as extraction solvents, and a measurable organic halogen content (ranging from 0.31 to 39.5 mg Cl/kg DM) was clearly detected in the sludge. The lowest concentrations of EOX were found in sludge coming from the smallest MWWTPs, which is to be considered more suitable for agricultural use. Additionally, analytical assays on composts, peat and soils were performed to compare EOX concentrations between these matrices and sludge.


Subject(s)
Fertilizers , Metals, Heavy/analysis , Organic Chemicals/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Conservation of Natural Resources , Environmental Monitoring , Italy , Waste Disposal, Fluid
18.
Ann Chim ; 95(9-10): 617-27, 2005.
Article in English | MEDLINE | ID: mdl-16342734

ABSTRACT

Drinkable water supplied by aqueducts undergoes preliminar potabilization which, in Italy, is mainly accomplished by chlorine addition. The bactericidal action involved in this process is always accompanied by chlorination and oxidation of organic species (mainly humic and fulvic acids) naturally present in treated waters, so that many disinfection by-products (DBPs) are formed, such as trihalomethanes (THMs) and halo-acetic acids (HAA), which can represent a chemical risk for public health. The aim of this study was the monitoring of DBPs in drinking water disinfected by chlorination, supplied by four different aqueducts of Central Friuli (Italy). DBP evaluations were performed in water samples consisting of both input and output of disinfection plants. The results of analytical determinations were worked out to provide the THM and HAA parameters for disinfected waters, while in feeding waters the following different conventional parameters were adopted: (i) trihalomethanes formation potential (THMFP), (ii) halo-acetic acids formation potential (HAAFP) and (iii) UV absorbance at 254 nm (UV254). The quite moderate content of chlorinated products found in all samples considered highlighted the excellent quality of potabilized waters available in Central Friuli. Moreover, our results confirmed that the majority of DBPs formed when chlorine is used for water disinfection consists of THMs, while chlorites and chlorates prevailed when potabilization is accomplished by using chlorine dioxide. Finally, simple UV254 monitoring turned out to be a profitable approach for the determination of chlorinated by-products only when THMs prevail among DBPs.


Subject(s)
Chlorine/metabolism , Disinfection/methods , Trihalomethanes/analysis , Water Purification/methods , Water Supply/analysis , Chlorates/analysis , Chlorides/analysis , Chlorine/chemistry , Humans , Italy , Spectrophotometry, Ultraviolet , Trihalomethanes/chemistry , Trihalomethanes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...