Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Cancer Sci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923173

ABSTRACT

Our study highlights the discovery of recurrent copy number alterations in noncoding regions, specifically blood enhancer cluster (BENC-CNA), in B-precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. We demonstrate that BENC-CNA acts as a super-enhancer, driving MYC expression and possibly contributing to the immortalization and proliferative advantage of BCP-ALL cells in vitro.

2.
Cancer Rep (Hoboken) ; 7(4): e2034, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577721

ABSTRACT

BACKGROUND: Adhesion of cancer cells to extracellular matrix laminin through the integrin superfamily reportedly induces drug resistance. Heterodimers of integrin α6 (CD49f) with integrin ß1 (CD29) or ß4 (CD104) are major functional receptors for laminin. Higher CD49f expression is reportedly associated with a poorer response to induction therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Moreover, a xenograft mouse model transplanted with primary BCP-ALL cells revealed that neutralized antibody against CD49f improved survival after chemotherapy. AIMS: Considering the poor outcomes in Philadelphia chromosome (Ph)-positive ALL treated with conventional chemotherapy without tyrosine kinase inhibitors, we sought to investigate an involvement of the laminin adhesion. METHODS AND RESULTS: Ph-positive ALL cell lines expressed the highest levels of CD49f among the BCP-ALL cell lines with representative translocations, while CD29 and CD104 were ubiquitously expressed in BCP-ALL cell lines. The association of Ph-positive ALL with high levels of CD49f gene expression was also confirmed in two databases of childhood ALL cohorts. Ph-positive ALL cell lines attached to laminin and their laminin-binding properties were disrupted by blocking antibodies against CD49f and CD29 but not CD104. The cell surface expression of CD49f, but not CD29 and CD104, was downregulated by imatinib treatment in Ph-positive ALL cell lines, but not in their T315I-acquired sublines. Consistently, the laminin-binding properties were disrupted by the imatinib pre-treatment in the Ph-positive ALL cell line, but not in its T315I-acquired subline. CONCLUSION: BCR::ABL1 plays an essential role in the laminin adhesion of Ph-positive ALL cells through upregulation of CD49f.


Subject(s)
Integrin alpha6 , Laminin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Up-Regulation , Animals , Humans , Mice , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Integrin alpha6/genetics , Laminin/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Cancer Sci ; 115(6): 1924-1935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38549229

ABSTRACT

In childhood acute lymphoblastic leukemia (ALL), TP53 gene mutation is associated with chemoresistance in a certain population of relapsed cases. To directly verify the association of TP53 gene mutation with chemoresistance of relapsed childhood ALL cases and improve their prognosis, the development of appropriate human leukemia models having TP53 mutation in the intrinsic gene is required. Here, we sought to introduce R248Q hotspot mutation into the intrinsic TP53 gene in an ALL cell line, 697, by applying a prime editing (PE) system, which is a versatile genome editing technology. The PE2 system uses an artificial fusion of nickase Cas9 and reverse-transcriptase to directly place new genetic information into a target site through a reverse transcriptase template in the prime editing guide RNA (pegRNA). Moreover, in the advanced PE3b system, single guide RNA (sgRNA) matching the edited sequence is also introduced to improve editing efficiency. The initially obtained MDM2 inhibitor-resistant PE3b-transfected subline revealed disrupted p53 transactivation activity, reduced p53 target gene expression, and acquired resistance to chemotherapeutic agents and irradiation. Although the majority of the subline acquired the designed R248Q and adjacent silent mutations, the insertion of the palindromic sequence in the scaffold hairpin structure of pegRNA and the overlap of the original genomic DNA sequence were frequently observed. Targeted next-generation sequencing reconfirmed frequent edit errors in both PE2 and PE3b-transfected 697 cells, and it revealed frequent successful edits in HEK293T cells. These observations suggest a requirement for further modification of the PE2 and PE3b systems for accurate editing in leukemic cells.


Subject(s)
Gene Editing , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Gene Editing/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Proto-Oncogene Proteins c-mdm2/genetics
5.
Epigenetics ; 18(1): 2268814, 2023 12.
Article in English | MEDLINE | ID: mdl-37839090

ABSTRACT

Asparaginase is an important agent for the treatment of acute lymphoblastic leukaemia (ALL), but it is occasionally associated with severe adverse events. Thus, for safer and more efficacious therapy, a clinical biomarker predicting asparaginase sensitivity is highly anticipated. Asparaginase depletes serum asparagine by deaminating asparagine into aspartic acid, and ALL cells are thought to be sensitive to asparaginase due to reduced asparagine synthetase (ASNS) activity. We have recently shown that allele-specific methylation of the ASNS gene is highly involved in asparaginase sensitivity in B-precursor ALL (BCP-ALL) by using next-generation sequence (NGS) analysis of bisulphite PCR products of the genomic DNA. Here, we sought to confirm the utility of methylation status of the ASNS gene evaluated with high-performance liquid chromatography (HPLC) analysis of bisulphite PCR products for future clinical applications. In the global methylation status of 23 CpG sites at the boundary region of promoter and exon 1 of the ASNS gene, a strong positive correlation was confirmed between the mean percent methylation evaluated with the HPLC method and that with the NGS method in 79 BCP-ALL cell lines (R2 = 0.85, p = 1.3 × 10-33) and in 63 BCP-ALL clinical samples (R2 = 0.84, p = 5.0 × 10-26). Moreover, methylation status of the ASNS gene evaluated with the HPLC method was significantly associated with in vitro asparaginase sensitivities as well as gene and protein expression levels of ASNS. These observations indicated that the ASNS gene methylation status evaluated with the HPLC method is a reliable biomarker for predicting the asparaginase sensitivity of BCP-ALL.


Subject(s)
Aspartate-Ammonia Ligase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/therapeutic use , Asparagine/genetics , Asparagine/metabolism , Asparagine/therapeutic use , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Chromatography, High Pressure Liquid , Pharmacogenetics , DNA Methylation , Cell Line, Tumor , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
8.
Mol Pharmacol ; 103(4): 199-210, 2023 04.
Article in English | MEDLINE | ID: mdl-36669880

ABSTRACT

6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.


Subject(s)
Mercaptopurine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mercaptopurine/pharmacology , CRISPR-Cas Systems/genetics , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recurrence , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/therapeutic use , Ribose-Phosphate Pyrophosphokinase/genetics , Ribose-Phosphate Pyrophosphokinase/metabolism
9.
Cancer Gene Ther ; 30(1): 38-50, 2023 01.
Article in English | MEDLINE | ID: mdl-35999358

ABSTRACT

The Philadelphia (Ph) chromosome was the first translocation identified in leukemia. It is supposed to be generated by aberrant ligation between two DNA double-strand breaks (DSBs) at the BCR gene located on chromosome 9q34 and the ABL1 gene located on chromosome 22q11. Thus, mimicking the initiation process of translocation, we induced CRISPR/Cas9-mediated DSBs simultaneously at the breakpoints of the BCR and ABL1 genes in a granulocyte-macrophage colony-stimulating factor (GM-CSF) dependent human leukemia cell line. After transfection of two single guide RNAs (sgRNAs) targeting intron 13 of the BCR gene and intron 1 of the ABL1 gene, a factor-independent subline was obtained. In the subline, p210 BCR::ABL1 and its reciprocal ABL1::BCR fusions were generated as a result of balanced translocation corresponding to the Ph chromosome. Another set of sgRNAs targeting intron 1 of the BCR gene and intron 1 of the ABL1 gene induced a factor-independent subline expressing p190 BCR::ABL1. Both p210 and p190 BCR::ABL1 induced factor-independent growth by constitutively activating intracellular signaling pathways for transcriptional regulation of cell cycle progression and cell survival that are usually regulated by GM-CSF. These observations suggested that simultaneous DSBs at the BCR and ABL1 gene breakpoints are initiation events for oncogenesis in Ph+ leukemia. (200/200 words).


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Philadelphia Chromosome , Humans , Fusion Proteins, bcr-abl/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , CRISPR-Cas Systems , Translocation, Genetic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Carcinogenesis/genetics
11.
Transplant Cell Ther ; 28(9): 598.e1-598.e8, 2022 09.
Article in English | MEDLINE | ID: mdl-35660064

ABSTRACT

Currently, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered to be indicated for children and adolescents with high-risk or relapsed T-cell acute lymphoblastic leukemia (T-ALL); however, the outcomes are unsatisfactory. Killer cell immunoglobulin-like receptors (KIRs) are the main receptors on natural killer (NK) cells that play an important role in the graft-versus-leukemia effect after allo-HSCT. In allo-HSCT, when the recipient lacks a donor KIR-ligand (KIR-ligand mismatch in the graft-versus-host [GVH] direction), donor NK cells will be activated against recipient cells. KIR-ligand mismatch in the GVH direction improves outcomes after unrelated cord blood transplantation (UCBT) with acute myeloid leukemia, but the effect in T-ALL is unclear. We evaluated the impact of KIR-ligand mismatch in the GVH direction on the transplantation outcomes of children and adolescents with T-ALL who received UCBT. We conducted a retrospective study using a nationwide registry of the Japanese Society for Transplantation and Cellular Therapy. Patients diagnosed with T-ALL, aged 0 to 19 years, and who underwent first UCBT between 1999 and 2017 were included. A total of 91 patients were included in this study. In all, 23 (25.3%) percent of patients had KIR-ligand mismatch in the GVH direction. The 5-year leukemia-free survival (LFS) and overall survival (OS) rates after UCBT were 65.8% and 69.6%, respectively. In a multivariate analysis, KIR-ligand mismatch in the GVH direction was associated with a significant reduction in the relapse rate (hazard ratio [HR], 0.19; P = .002), resulting in better LFS (HR, 0.18; P =.010) and OS (HR, 0.26; P = .048) without increasing non-relapse mortality (NRM; HR, 1.90; P = .264). The cumulative incidence of GVH disease (GVHD) did not differ between patients with and without KIR-ligand mismatch (grade II-IV acute GVHD, 39.1% versus 36.8%, P = .648, grade III-IV acute GVHD, 13.0% versus 11.8%, P =.857, and chronic GVHD, 26.1% versus 22.9%, P =.736, respectively). Furthermore, acute and chronic GVHD were not associated with good patient outcomes. Notably, no relapse was observed in patients who received KIR-ligand mismatched UCBT in complete remission. KIR-ligand mismatch in the GVH direction improved LFS and decreased relapse rates without increasing NRM in children and adolescents with T-ALL who received UCBT, which was not mediated by GVHD.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Histocompatibility Antigens , Humans , Ligands , Retrospective Studies , T-Lymphocytes
12.
Int J Hematol ; 116(4): 534-543, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35524023

ABSTRACT

Imatinib and second-generation tyrosine kinase inhibitors (TKIs) have dramatically improved the prognosis of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, overcoming TKI resistance due to the T315I gatekeeper mutation of BCR/ABL1 is crucial for further improving the prognosis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is appropriate for establishing a human model of Ph+ ALL with the T315I mutation, because it can induce specific mutations via homologous recombination (HR) repair in cells with intact endogenous HR pathway. Here we used CRISPR/Cas9 to introduce the T315I mutation into the Ph+ lymphoid leukemia cell line KOPN55bi, which appeared to have an active HR pathway based on its resistance to a poly (ADP-Ribose) polymerase-1 inhibitor. Single-guide RNA targeting at codon 315 and single-strand oligodeoxynucleotide containing ACT to ATT nucleotide transition at codon 315 were electroporated with recombinant Cas9 protein. Dasatinib-resistant sublines were obtained after one-month selection with the therapeutic concentration of dasatinib, leading to T315I mutation acquisition through HR. T315I-acquired sublines were highly resistant to imatinib and second-generation TKIs but moderately sensitive to the therapeutic concentration of ponatinib. This authentic human model is helpful for developing new therapeutic strategies overcoming TKI resistance in Ph+ ALL due to T315I mutation.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antineoplastic Agents/therapeutic use , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Cell Line , Dasatinib/therapeutic use , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mutation , Nucleotides/therapeutic use , Oligodeoxyribonucleotides/therapeutic use , Philadelphia Chromosome , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , RNA, Guide, Kinetoplastida/therapeutic use
13.
Medicine (Baltimore) ; 101(11)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35356922

ABSTRACT

RATIONALE: The gastrointestinal (GI) tract is a common target organ of graft-vs-host disease (GVHD) in hematopoietic stem cell transplantation (HSCT) patients, and GI tract GVHD is often resistant to standard treatments such as corticosteroids. Moreover, longterm use of systemic corticosteroids sometimes induces adverse events such as infection. Beclomethasone dipropionate (BDP) is a potent, topically active corticosteroid, which is metabolized to an active derivative in the intestinal mucosa. Oral BDP therapy is reportedly effective against GI tract GVHD in adult HSCT patients, but its efficacy and safety in pediatric patients remain undefined. Here, we report three pediatric and young adult cases who were treated with oral BDP. PATIENT CONCERNS: Three (6-, 7-, and 18-year-old) patients developed stage 2 to 4 lower GI tract GVHD, which was resistant to standard immunosuppressive therapies. DIAGNOSIS: Lower GI tract GVHD in these patients was histopathologically proven by endoscopic biopsy. INTERVENTIONS: Oral administration of enteric-coated capsules of BDP (3-8 mg/day) was started for the treatment of lower GI tract GVHD. OUTCOMES: With the introduction of oral BDP therapy, their GI tract symptoms promptly resolved (abdominal pain, within 3-7 days; diarrhea, within 2-3 weeks). Subsequently, systemic immunosuppressive agents such as corticosteroids and mycophenolate mofetil were successfully tapered off. During oral BDP therapy, although cytomegalovirus antigenemia and Acinetobacter Iwoffii sepsis developed in 2 cases, both were curable with conventional treatments. In a young adult case, concomitant BK virus-associated hemorrhagic cystitis resolved after oral BDP was introduced and systemic immunosuppressive agents were reduced. Transient growth restriction was observed in a pediatric case who was treated with oral BDP for approximately 300days. LESSONS: Our experiences suggest that oral BDP therapy is an effective approach for GI tract GVHD that is resistant to standard immunosuppressive therapies. Of clinical importance, our case suggests the possibility that oral BDP therapy may improve the immunosuppressive condition in GI tract GVHD patients by contributing to the reduction of systemic immunosuppressive medications as a result of prompt improvement of GI tract GVHD symptoms.


Subject(s)
Gastrointestinal Diseases , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Beclomethasone/adverse effects , Beclomethasone/therapeutic use , Child , Gastrointestinal Diseases/chemically induced , Gastrointestinal Diseases/etiology , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Young Adult
14.
J Steroid Biochem Mol Biol ; 218: 106068, 2022 04.
Article in English | MEDLINE | ID: mdl-35124168

ABSTRACT

Glucocorticoid (GC) is a key drug in the treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and the initial GC response is an important prognostic factor. GC receptors play an essential role in GC sensitivity, and somatic mutations of the GC receptor gene, NR3C1, are reportedly identified in some BCP-ALL cases, particularly at relapse. Moreover, associations of somatic mutations of the CREB-binding protein (CREBBP) and Wolf-Hirschhorn syndrome candidate 1 (WHSC1) genes with the GC-resistance of ALL have been suggested. However, the significance of these mutations in the GC sensitivity of BCP-ALL remains to be clarified in the intrinsic genes. In the present study, we sequenced NR3C1, WHSC1, and CREBBP genes in 99 BCP-ALL and 22 T-ALL cell lines (32 and 67 cell lines were known to be established at diagnosis and at relapse, respectively), and detected their mutations in 19 (2 cell lines at diagnosis and 15 cell lines at relapse), 26 (6 and 15), and 38 (11 and 15) cell lines, respectively. Of note, 14 BCP-ALL cell lines with the NR3C1 mutations were significantly more resistant to GC than those without mutations. In contrast, WHSC1 and CREBBP mutations were not associated with GC resistance. However, among the NR3C1 unmutated BCP-ALL cell lines, WHSC1 mutations tended to be associated with GC resistance and lower NR3C1 gene expression. Finally, we successfully established GC-resistant sublines of the GC-sensitive BCP-ALL cell line (697) by disrupting ligand binding and DNA binding domains of the NR3C1 gene using the CRISPR/Cas9 system. These observations demonstrated that somatic mutations of the NR3C1 gene, and possibly the WHSC1 gene, confer GC resistance in BCP-ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Glucocorticoid , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Metabolism, Inborn Errors , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Recurrence
15.
Blood Adv ; 6(1): 212-224, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34535013

ABSTRACT

Asparaginase therapy is a key component of chemotherapy for patients with T-cell acute lymphoblastic leukemia (T-ALL). Asparaginase depletes serum asparagine by deamination into aspartic acid. Normal hematopoietic cells can survive due to asparagine synthetase (ASNS) activity, whereas leukemia cells are supposed to undergo apoptosis due to silencing of the ASNS gene. Because the ASNS gene has a typical CpG island in its promoter, its methylation status in T-ALL cells may be associated with asparaginase sensitivity. Thus, we investigated the significance of ASNS methylation status in asparaginase sensitivity of T-ALL cell lines and prognosis of childhood T-ALL. Sequencing of bisulfite polymerase chain reaction products using next-generation sequencing technology in 22 T-ALL cell lines revealed a stepwise allele-specific methylation of the ASNS gene, in association with an aberrant methylation of a 7q21 imprinted gene cluster. T-ALL cell lines with ASNS hypermethylation status showed significantly higher in vitro l-asparaginase sensitivity in association with insufficient asparaginase-induced upregulation of ASNS gene expression and lower basal ASNS protein expression. A comprehensive analysis of diagnostic samples from pediatric patients with T-ALL in Japanese cohorts (N = 77) revealed that methylation of the ASNS gene was associated with an aberrant methylation of the 7q21 imprinted gene cluster. In pediatric T-ALL patients in Japanese cohorts (n = 75), ASNS hypomethylation status was significantly associated with poor therapeutic outcome, and all cases with poor prognostic SPI1 fusion exclusively exhibited ASNS hypomethylation status. These observations show that ASNS hypomethylation status is associated with asparaginase resistance and is a poor prognostic biomarker in childhood T-ALL.


Subject(s)
Asparaginase , Aspartate-Ammonia Ligase , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Alleles , Asparaginase/therapeutic use , Asparagine/genetics , Asparagine/metabolism , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism , Cell Line, Tumor , Child , DNA Methylation , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis
16.
J Cell Mol Med ; 25(22): 10521-10533, 2021 11.
Article in English | MEDLINE | ID: mdl-34636169

ABSTRACT

In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.


Subject(s)
5'-Nucleotidase/genetics , Drug Resistance, Neoplasm/genetics , Mercaptopurine/pharmacology , Mutation , Polymorphism, Genetic , Pyrophosphatases/genetics , Ribose-Phosphate Pyrophosphokinase/genetics , Alleles , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Dose-Response Relationship, Drug , Genotype , Humans
17.
Genes (Basel) ; 12(6)2021 06 05.
Article in English | MEDLINE | ID: mdl-34198757

ABSTRACT

Immunotherapies specific for B-cell precursor acute lymphoblastic leukemia (BCP-ALL), such as anti-CD19 chimeric antigen receptor (CAR) T-cells and blinatumomab, have dramatically improved the therapeutic outcome in refractory cases. In the anti-leukemic activity of those immunotherapies, TNF-related apoptosis-inducing ligand (TRAIL) on cytotoxic T-cells plays an essential role by inducing apoptosis of the target leukemia cells through its death receptors (DR4 and DR5). Since there are CpG islands in the promoter regions, hypermethylation of the DR4 and DR5 genes may be involved in resistance of leukemia cells to immunotherapies due to TRAIL-resistance. We analyzed the DR4 and DR5 methylation status in 32 BCP-ALL cell lines by sequencing their bisulfite PCR products with a next-generation sequencer. The DR4 and DR5 methylation status was significantly associated with the gene and cell-surface expression levels and the TRAIL-sensitivities. In the clinical samples at diagnosis (459 cases in the NOPHO study), both DR4 and DR5 genes were unmethylated in the majority of cases, whereas methylated in several cases with dic(9;20), MLL-rearrangement, and hypodiploidy, suggesting that evaluation of methylation status of the DR4 and DR5 genes might be clinically informative to predict efficacy of immunotherapy in certain cases with such unfavorable karyotypes. These observations provide an epigenetic rational for clinical efficacy of immunotherapy in the vast majority of BCP-ALL cases.


Subject(s)
DNA Methylation , Drug Resistance, Neoplasm , Epigenesis, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Cell Line, Tumor , CpG Islands , Humans , Promoter Regions, Genetic , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/toxicity
18.
J Cell Mol Med ; 24(22): 12920-12932, 2020 11.
Article in English | MEDLINE | ID: mdl-33002292

ABSTRACT

Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B-cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome-wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10-8 ), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10-6 ), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10-8 ), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.


Subject(s)
Gene Expression Regulation, Leukemic , Genetic Variation , Glucocorticoids/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Line, Tumor , Dexamethasone/pharmacology , Drug Screening Assays, Antitumor , Gene Expression Profiling , Genotype , Humans , Inhibitory Concentration 50 , Japan , Pharmacogenetics , Polymorphism, Single Nucleotide , Prednisolone/pharmacology , Receptors, Glucocorticoid/genetics
20.
Blood ; 136(20): 2319-2333, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32573712

ABSTRACT

Karyotype is an important prognostic factor in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), but the underlying pharmacogenomics remain unknown. Asparaginase is an integral component in current chemotherapy for childhood BCP-ALL. Asparaginase therapy depletes serum asparagine. Normal hematopoietic cells can produce asparagine by asparagine synthetase (ASNS) activity, but ALL cells are unable to synthesize adequate amounts of asparagine. The ASNS gene has a typical CpG island in its promoter. Thus, methylation of the ASNS CpG island could be one of the epigenetic mechanisms for ASNS gene silencing in BCP-ALL. To gain deep insights into the pharmacogenomics of asparaginase therapy, we investigated the association of ASNS methylation status with asparaginase sensitivity. The ASNS CpG island is largely unmethylated in normal hematopoietic cells, but it is allele-specifically methylated in BCP-ALL cells. The ASNS gene is located at 7q21, an evolutionally conserved imprinted gene cluster. ASNS methylation in childhood BCP-ALL is associated with an aberrant methylation of the imprinted gene cluster at 7q21. Aberrant methylation of mouse Asns and a syntenic imprinted gene cluster is also confirmed in leukemic spleen samples from ETV6-RUNX1 knockin mice. In 3 childhood BCP-ALL cohorts, ASNS is highly methylated in BCP-ALL patients with favorable karyotypes but is mostly unmethylated in BCP-ALL patients with poor prognostic karyotypes. Higher ASNS methylation is associated with higher L-asparaginase sensitivity in BCP-ALL through lower ASNS gene and protein expression levels. These observations demonstrate that silencing of the ASNS gene as a result of aberrant imprinting is a pharmacogenetic mechanism for the leukemia-specific activity of asparaginase therapy in BCP-ALL.


Subject(s)
Asparaginase/therapeutic use , Aspartate-Ammonia Ligase/genetics , Pharmacogenomic Variants/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Child , Chromosome Aberrations , DNA Methylation/genetics , Genomic Imprinting/genetics , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...