Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903187

ABSTRACT

The San Carlo Colossus, known as San Carlone, is a monument constituted by an internal stone pillar support to which a wrought iron structure is attached. Embossed copper sheets are fixed to the iron structure to give the final shape to the monument. After more than 300 years of outdoor exposure, this statue represents an opportunity for an in-depth investigation of long-term galvanic coupling between wrought iron and copper. Most iron elements of the San Carlone appeared in good conservation conditions with scarce evidence of galvanic corrosion. In some cases, the same iron bars presented some portions in good conservation conditions and other nearby portions with active corrosion. The aim of the present study was to investigate the possible factors correlated with such mild galvanic corrosion of wrought iron elements despite the widespread direct contact with copper for more than 300 years. Optical and electronic microscopy and compositional analyses were carried out on representative samples. Furthermore, polarisation resistance measurements were performed both on-site and in a laboratory. The results revealed that the iron bulk composition showed a ferritic microstructure with coarse grains. On the other hand, the surface corrosion products were mainly composed of goethite and lepidocrocite. Electrochemical analyses showed good corrosion resistance of both the bulk and surface of the wrought iron, and galvanic corrosion is not occurring probably due to the iron's relatively noble corrosion potential. The few areas where iron corrosion was observed are apparently related to environmental factors, such as the presence of thick deposits and to the presence of hygroscopic deposits that create localized microclimatic conditions on the surface of the monument.

2.
Sci Rep ; 13(1): 4902, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36966150

ABSTRACT

This paper accounts for the diagnostic campaign aimed at understanding the phenomenon of black stains appeared on the passepartout close to the margins of Folio 843 of Leonardo da Vinci's Codex Atlanticus. Previous studies excluded microbiological deterioration processes. The study is based on a multi-analytical approach, including non-invasive imaging measurements of the folio, micro-imaging and synchrotron spectroscopy investigations of passepartout fragments at different magnifications and spectral ranges. Photoluminescence hyperspectral and lifetime imaging highlighted that black stains are not composed of fluorescent materials. µATR-FTIR imaging of fragments from the passepartout revealed the presence of a mixture of starch and PVAc glues localized only in the stained areas close to the margin of the folio. FE-SEM observations showed that the dark stains are localized inside cavities formed among cellulose fibers, where an accumulation of inorganic roundish particles (∅100-200 nm in diameter size), composed of Hg and S, was detected. Finally, by employing synchrotron µXRF, µXANES and HR-XRD analyses it was possible to identify these particles as metacinnabar (ß-HgS). Further research is needed to assess the chemical process leading to the metacinnabar formation in the controlled conservation condition of Leonardo's Codex.

3.
Environ Sci Pollut Res Int ; 27(12): 13081-13094, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32016874

ABSTRACT

The cleaning of metallic artworks is a crucial step for their preservation. Cleaning operations generally aim at removing deposits and corrosion layers, and all the non-stable and potentially reactive phases formed as a consequence of the interaction of the metal with the environment. Thus, all secondary-formed compounds and layers that can undermine the overall preservation of the artwork, both from the esthetic and the corrosion point of view, should be removed. On the other hand, superficial stable patinas contributing to the artistic and historic value of the objects and that may provide protection to the metallic surface should be preserved. The optimal cleaning procedure should be able to promote a long-term improvement of the corrosion resistance of the surfaces. Therefore, the long-term monitoring of the corrosion behavior of the cleaned surfaces with electrochemical techniques could provide valuable information for the selection of the optimal methodology. In this work, five cleaning procedures have been applied to five bronze sculptures. The cleaned surfaces have been characterized following a multi-analytical and non-invasive approach, and the long-term evolution of their corrosion behavior has been monitored by means of on-site non-invasive linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements for more than 2 years.


Subject(s)
Artifacts , Metals , Corrosion , Dielectric Spectroscopy , Sculpture
4.
Angew Chem Int Ed Engl ; 57(25): 7360-7363, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29425408

ABSTRACT

Layered treatments of natural stones based on dispersions of experimental nano-TiO2 and commercial TEOS showing photocatalytic and self-cleaning properties were set up and tested. To enhance nano-TiO2 efficacy, a surface pre-treatment with tetraethyl orthosilicate was proposed to avoid the penetration of NPs into the crystalline porous substrates and to improve their adhesion to the stone. Two treatment applications (wet-on-wet and wet-on-dry) were compared, showing different results. A strong interaction Si-O-Ti was the key factor for the successful treatment, leaving the band gap and relevant properties of nano-TiO2 unaltered. The layered treatments were tested on a porous calcarenite (Noto stone) and a very compact marble (Carrara marble). The combined SiO2 -nano-TiO2 treatments can find application in suitable cases where a surface consolidation is needed, ensuring a depolluting and self-cleaning durable activity.

5.
Materials (Basel) ; 11(1)2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29301338

ABSTRACT

In the field of stone protection, the introduction of inorganic nanoparticles, such as TiO2, ZnO, and Ag in polymeric blends can enhance the protective action of pristine treatments, as well as confer additional properties (photocatalytic, antifouling, and antibacterial). In the framework of the "Nano-Cathedral" European project, nanostructured photocatalytic protective treatments were formulated by using different TiO2 nanoparticles, solvents, and silane/siloxane systems in the blends. The results about the characterization and application of two promising nano-TiO2 based products applied on Apuan marble and Ajarte limestone are here reported, aiming at investigating the complex system "treatment/stone-substrate". The nanocomposites show better performances when compared to a commercial reference siloxane based protective treatment, resulting in different performances once applied on different carbonatic substrates, with very low and high open porosity, confirming the necessity of correlating precisely the characteristics of the stone material to those of the protective formulations. In particular, the TiO2 photocatalytic behavior is strictly linked to the amount of available nanoparticles and to the active surface area. The alkyl silane oligomers of the water-based formulation have a good penetration into the microstructure of Ajarte limestone, whereas the solvent-based and small size monomeric formulation shows better results for Apuan marble, granting a good coverage of the pores. The encouraging results obtained so far in lab will be confirmed by monitoring tests aiming at assessing the effectiveness of the treatments applied in pilot sites of historical Gothic Cathedrals.

6.
Environ Pollut ; 196: 363-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25463734

ABSTRACT

Predictions of the diffuse dispersion of metals from outdoor constructions such as roofs and facades are necessary for environmental risk assessment and management. An existing predictive model has been compared with measured data of copper runoff from copper sheets exposed at four different inclinations facing four orientations at two different urban sites (Stockholm, Sweden, and Milan, Italy) during a 4-year period. Its applicability has also been investigated for copper sheet exposed at two marine sites(Cadiz, Spain, for 5 years, and Brest, France, for 9 years). Generally the model can be used for all given conditions. However, vertical surfaces should be considered as surfaces inclined 60-80 due to wind driven effects. The most important parameters that influence copper runoff, and not already included in the model, are the wind and rain characteristics that influence the actual rainfall volume impinging the surface of interest.


Subject(s)
Atmosphere/chemistry , Copper/analysis , Environmental Pollutants/analysis , Models, Chemical , Rain/chemistry , Climate , Metals , Models, Theoretical , Spain , Wind
7.
Sensors (Basel) ; 14(4): 7066-83, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24759110

ABSTRACT

Traditional electrochemical techniques, such as linear polarization resistance (Rp), and electrochemical impedance spectroscopy (EIS), cannot be applied to gilded bronzes, as it may not be possible to interpret the results obtained due to the bimetallic nature of the studied material. The measurement of the macrocouple current generated by the gold/bronze galvanic couple can be used as an indicator of degradation processes. Nevertheless, this measurement cannot be performed directly on the original artifacts due to the systematic presence of short-circuits between the two metals. In the present work the use of galvanic sensors is proposed as a possible solution for the monitoring of gilded bronze artefacts. The sensors have been designed to simulate real gilded bronze surfaces in terms of composition and stratigraphy and have proved to be a reliable diagnostic tool for the in situ monitoring of the rates of deterioration of gilded bronze surfaces and to test new conservation treatments. Their set-up and application is reported and their performances discussed.

8.
Sci Total Environ ; 472: 681-94, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24321319

ABSTRACT

Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties.


Subject(s)
Chlorides/analysis , Copper/analysis , Corrosion , Seawater/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , France , Models, Chemical
9.
Environ Sci Technol ; 48(3): 1372-81, 2014.
Article in English | MEDLINE | ID: mdl-24359256

ABSTRACT

This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.


Subject(s)
Construction Materials/analysis , Copper/analysis , Water Pollutants, Chemical/analysis , Climate , Construction Materials/standards , Copper/chemistry , Corrosion , Environmental Monitoring , Models, Theoretical , Rain , Seasons , Surface Properties , Water Pollutants, Chemical/chemistry , Wind
10.
Anal Bioanal Chem ; 401(6): 1801-14, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21735063

ABSTRACT

Nine black powders found in Pompeii houses in three different types of bronze vessels (cylindrical theca atramentaria, unguentaries, and aryballoi) were characterized in order to assess a correspondence between the composition and the type of vessel and, possibly, to verify if these powders were inks or not. For the compositional characterization, a multi-analytical approach was adopted, which involved the use of scanning electron microscopy-energy dispersive X-ray, Fourier-transformed infrared spectroscopy, Raman, X-ray diffraction, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, gas chromatography coupled with mass spectrometry (GC/MS), and pyrolysis GC/MS. Powders contained in cylindrical theca atramentaria form a homogeneous group, and their organic and inorganic compositions suggest that they were writing inks, while powders contained in unguentaries and aryballoi could have had several different uses, including writing inks and cosmetics. Furthermore, the composition profile of the powders found in cylindrical cases shows that, at 79 AD: , in Pompeii, carbon-based inks were still used for writing, and iron gall inks had not been introduced yet.

11.
Environ Monit Assess ; 144(1-3): 455-61, 2008 Sep.
Article in English | MEDLINE | ID: mdl-17985207

ABSTRACT

A 2-year field study has been conducted in an urban environment to provide annual release rates of copper and zinc from brass (20 wt% Zn) and copper and tin from bronze (6 wt% Sn) compared to sheets of their pure alloy constituents, copper and zinc. Despite relatively low nominal bulk alloy content, substantially more zinc was released from brass compared to copper. Both metals were released at a significantly slower rate from the brass alloy, compared to the pure metals. The proportion of release rates of copper and zinc from the alloy differed significantly from their proportions in the bulk alloy. Bronze showed relatively constant release rates of copper, being similar to that of pure copper sheet. The release of tin from bronze was negligible. The results clearly show that alloys and the pure metals behave very differently when exposed to rainwater. Accordingly, release rates from pure metals cannot be used to predict release rates of individual constituents from their alloys. Generated data are of importance within REACH, the new chemical policy of the European commission, where metal alloys erroneously are being treated as mixtures of chemical substances.


Subject(s)
Alloys/chemistry , Copper/analysis , Rain/chemistry , Zinc/analysis , Cities , Copper/chemistry , Corrosion , Environmental Pollution , Humans , Tin/analysis , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...