Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 9: 1940, 2018.
Article in English | MEDLINE | ID: mdl-30233505

ABSTRACT

Bacteria belonging to the genera Dickeya and Pectobacterium are responsible for significant economic losses in a wide variety of crops and ornamentals. During last years, increasing losses in potato production have been attributed to the appearance of Dickeya solani. The D. solani strains investigated so far share genetic homogeneity, although different virulence levels were observed among strains of various origins. The purpose of this study was to investigate the genetic traits possibly related to the diverse virulence levels by means of comparative genomics. First, we developed a new genome assembly pipeline which allowed us to complete the D. solani genomes. Four de novo sequenced and ten publicly available genomes were used to identify the structure of the D. solani pangenome, in which 74.8 and 25.2% of genes were grouped into the core and dispensable genome, respectively. For D. solani panregulon analysis, we performed a binding site prediction for four transcription factors, namely CRP, KdgR, PecS and Fur, to detect the regulons of these virulence regulators. Most of the D. solani potential virulence factors were predicted to belong to the accessory regulons of CRP, KdgR, and PecS. Thus, some differences in gene expression could exist between D. solani strains. The comparison between a highly and a low virulent strain, IFB0099 and IFB0223, respectively, disclosed only small differences between their genomes but significant differences in the production of virulence factors like pectinases, cellulases and proteases, and in their mobility. The D. solani strains also diverge in the number and size of prophages present in their genomes. Another relevant difference is the disruption of the adhesin gene fhaB2 in the highly virulent strain. Strain IFB0223, which has a complete adhesin gene, is less mobile and less aggressive than IFB0099. This suggests that in this case, mobility rather than adherence is needed in order to trigger disease symptoms. This study highlights the utility of comparative genomics in predicting D. solani traits involved in the aggressiveness of this emerging plant pathogen.

2.
Carbohydr Res ; 445: 40-43, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28395253

ABSTRACT

O-polysaccharides were isolated from lipopolysaccharides obtained from four different strains of plant pathogenic bacteria belonging to the species Dickeya solani: two of them were isolated in Poland (IFB0099 and IFB0158), the third in Germany (IFB0223) and the last one, D. solani Type Strain IPO2222, originated from the Netherlands. In addition, the O-polysaccharide of a closely related species D. dadantii strain 3937 was isolated. The purified polysaccharides of the five strains were analyzed using NMR spectroscopy and chemical methods. Sugar and methylation analyses, including absolute configuration assignment, together with NMR data revealed that all O-polysaccharides tested are homopolymers of 6-deoxy-d-altrose (d-6dAlt) the following structure: →2)-ß-d-6dAltp-(1→.


Subject(s)
Enterobacteriaceae/chemistry , O Antigens/chemistry , Species Specificity
3.
Plant Dis ; 100(2): 408-417, 2016 Feb.
Article in English | MEDLINE | ID: mdl-30694126

ABSTRACT

Bacteria from the genera Dickeya (formerly Erwinia chrysanthemi) and Pectobacterium (formerly E. carotovora) are the agents of blackleg and soft rot on many important crops. In 2005, Dickeya solani was isolated for the first time in Poland from a symptomatic potato plant. To establish the presence and diversity of Dickeya spp. in Poland, we surveyed potato fields and water sources, including surface waters near potato fields and water from potato-processing facilities and sewage plants. Only D. dianthicola and D. solani were isolated from symptomatic potato, and only D. zeae and D. chrysanthemi were isolated from water sources. The Dickeya spp. isolated from potato formed a relatively homogenous group, while those from water sources were more diverse. To our knowledge, this is the first comprehensive characterization of Dickeya spp. isolated during several years from regions with a temperate climate in Central Europe.

4.
Mol Plant Microbe Interact ; 2015(1): 5-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-27839070

ABSTRACT

Bacteria from the genus Dickeya (formerly Erwinia chrysanthemi) are plant pathogens causing severe diseases in many economically important crops. A majority of the strains responsible for potato disease in Europe belong to a newly identified Dickeya solani species. Although some ecological and epidemiological studies have been carried out, little is known about the regulation of D. solani virulence. The characterization of four D. solani strains indicates significant differences in their virulence on potato although they are genetically similar based on genomic fingerprinting profiles. A phenotypic examination included an analysis of virulence on potato, growth rate in culture, motility, Fe3+ chelation, and pectate lyase, cellulase, protease, biosurfactant and blue pigment production. Mutants of four D. solani strains were constructed by inactivating the genes coding either for one of the main negative regulators of D. dadantii virulence (kdgR, pecS and pecT) or for the synthesis and perception of signaling molecules (expI and expR). Analysis of these mutants indicated that PecS, PecT and KdgR play a similar role in both species, repressing to different degrees the synthesis of virulence factors. The thermoregulator PecT seems to be a major regulator of D. solani virulence. This work also reveals the role of quorum sensing mediated by ExpI and ExpR in D. solani virulence on potato.

5.
Mol Plant Microbe Interact ; 2015(1): 57-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-27839073

ABSTRACT

Bacteria from the genus Dickeya (formerly Erwinia chrysanthemi) are plant pathogens causing severe diseases in many economically important crops. A majority of the strains responsible for potato disease in Europe belong to a newly identified Dickeya solani species. Although some ecological and epidemiological studies have been carried out, little is known about the regulation of D. solani virulence. The characterization of four D. solani strains indicates significant differences in their virulence on potato although they are genetically similar based on genomic fingerprinting profiles. A phenotypic examination included an analysis of virulence on potato, growth rate in culture, motility, Fe3+ chelation, and pectate lyase, cellulase, protease, biosurfactant and blue pigment production. Mutants of four D. solani strains were constructed by inactivating the genes coding either for one of the main negative regulators of D. dadantii virulence (kdgR, pecS and pecT) or for the synthesis and perception of signaling molecules (expI and expR). Analysis of these mutants indicated that PecS, PecT and KdgR play a similar role in both species, repressing to different degrees the synthesis of virulence factors. The thermoregulator PecT seems to be a major regulator of D. solani virulence. This work also reveals the role of quorum sensing mediated by ExpI and ExpR in D. solani virulence on potato.

6.
Mol Plant Microbe Interact ; 27(7): 700-11, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24625032

ABSTRACT

Bacteria from the genus Dickeya (formerly Erwinia chrysanthemi) are plant pathogens causing severe diseases in many economically important crops. A majority of the strains responsible for potato disease in Europe belong to a newly identified Dickeya solani species. Although some ecological and epidemiological studies have been carried out, little is known about the regulation of D. solani virulence. The characterization of four D. solani strains indicates significant differences in their virulence on potato, although they are genetically similar based on genomic fingerprinting profiles. A phenotypic examination included an analysis of virulence on potato; growth rate in culture; motility; Fe3+ chelation; and pectate lyase, cellulase, protease, biosurfactant, and blue pigment production. Mutants of four D. solani strains were constructed by inactivating the genes coding either for one of the main negative regulators of D. dadantii virulence (kdgR, pecS, and pecT) or for the synthesis and perception of signaling molecules (expI and expR). Analysis of these mutants indicated that PecS, PecT, and KdgR play a similar role in both species, repressing, to different degrees, the synthesis of virulence factors. The thermoregulator PecT seems to be a major regulator of D. solani virulence. This work also reveals the role of quorum sensing mediated by ExpI and ExpR in D. solani virulence on potato.


Subject(s)
Bacterial Proteins/metabolism , Dickeya chrysanthemi/physiology , Dickeya chrysanthemi/pathogenicity , Gene Expression Regulation, Bacterial/physiology , Plant Diseases/microbiology , Bacterial Proteins/genetics , Bacteriophages , Cichorium intybus/microbiology , Dickeya chrysanthemi/genetics , Dickeya chrysanthemi/virology , Solanum tuberosum/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL