Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Nature ; 630(8016): 368-374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867128

ABSTRACT

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Subject(s)
Adhesives , Glass , Oligopeptides , Adhesives/chemistry , Glass/chemistry , Temperature , Vitrification , Water/chemistry , Oligopeptides/chemistry , Tyrosine/chemistry , Light , Infrared Rays
2.
Solid State Nucl Magn Reson ; 124: 101859, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37015155

ABSTRACT

Rotor-synchronous π pulses applied to protons (S) enhance homonuclear polarisation transfer between two spins (I) such as 13C or 15N as long as at least a single I-S heteronuclear dipolar-coupling interaction exists. The enhancement is maximum when the chemical-shift difference Δν between two spins equals an integer multiple, n, of the pulse-modulation frequency, which is half the rotor frequency νr. This condition, applied in the Pulse Induced Resonance with Angular dependent Total Enhancement (PIRATE) experiment, can be generalised for any spacing of the pulses k/νr such that Δν=nνr2k . We show, using average Hamiltonian theory (AHT) and Floquet theory, that the resonance conditions promote a second-order recoupling consisting of a cross-term between the homonuclear and heteronuclear dipolar interactions in a three-spin system. The minimum requirement is a coupling between the two I spins and a coupling of one of the I spins to the S spin. The effective Hamiltonian at the resonance conditions contains three-spin operators of the form 2I1±I2∓Sz with a non-zero effective dipolar coupling. Theoretical analysis shows that the effective strength of the resonance conditions decreases with increasing values of k and n. The theory is backed by numerical simulations, and experimental results on fully labelled 13C-glycine demonstrating the efficiency of the different resonance condition for k=1,2 at various spinning frequencies.

3.
Small ; 19(12): e2205994, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638248

ABSTRACT

The interest in development of non-graphitic polymeric carbon nitrides (PCNs), with various C-to-N ratios, having tunable electronic, optical, and chemical properties is rapidly increasing. Here the first self-propagating combustion synthesis methodology for the facile preparation of novel porous PCN materials (PCN3-PCN7) using new nitrogen-rich triazene-based precursors is reported. This methodology is found to be highly precursor dependent, where variations in the terminal functional groups in the newly designed precursors (compounds 3-7) lead to different combustion behaviors, and morphologies of the resulted PCNs. The foam-type highly porous PCN5, generated from self-propagating combustion of 5 is comprehensively characterized and shows a C-to-N ratio of 0.67 (C3 N4.45 ). Thermal analyses of PCN5 formulations with ammonium perchlorate (AP) reveal that PCN5 has an excellent catalytic activity in the thermal decomposition of AP. This catalytic activity of PCN5 is further evaluated in a closer-to-application scenario, showing an increase of 18% in the burn rate of AP-Al-HTPB (with 2 wt% of PCN5) solid composite propellant. The newly developed template- and additive-free self-propagating combustion synthetic methodology using specially designed nitrogen-rich precursors should provide a novel platform for the preparation of non-graphitic PCNs with a variety of building block chemistries, morphologies, and properties suitable for a broad range of technologies.

4.
J Am Chem Soc ; 145(1): 300-310, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36542094

ABSTRACT

F-specific filamentous phages, elongated particles with circular single-stranded DNA encased in a symmetric protein capsid, undergo an intermediate step, where thousands of homodimers of a non-structural protein, gVp, bind to newly synthesized strands of DNA, preventing further DNA replication and preparing the circular genome in an elongated conformation for assembly of a new virion structure at the membrane. While the structure of the free homodimer is known, the ssDNA-bound conformation has yet to be determined. We report an atomic-resolution structure of the gVp monomer bound to ssDNA of fd phage in the nucleoprotein complex elucidated via magic-angle spinning solid-state NMR. The model presents significant conformational changes with respect to the free form. These modifications facilitate the binding mechanism and possibly promote cooperative binding in the assembly of the gVp-ssDNA complex.


Subject(s)
Bacteriophage M13 , DNA, Single-Stranded , Bacteriophage M13/chemistry , Bacteriophage M13/metabolism , DNA, Single-Stranded/metabolism , Nuclear Magnetic Resonance, Biomolecular , Magnetic Resonance Spectroscopy , Capsid Proteins/genetics , Capsid Proteins/metabolism , DNA, Viral/genetics
6.
Viruses ; 14(6)2022 06 10.
Article in English | MEDLINE | ID: mdl-35746735

ABSTRACT

Gene V protein (gVp) of the bacteriophages of the Ff family is a non-specific single-stranded DNA (ssDNA) binding protein. gVp binds to viral DNA during phage replication inside host Escherichia coli cells, thereby blocking further replication and signaling the assembly of new phage particles. gVp is a dimer in solution and in crystal form. A structural model of the complex between gVp and ssDNA was obtained via docking the free gVp to structures of short ssDNA segments and via the detection of residues involved in DNA binding in solution. Using solid-state NMR, we characterized structural features of the gVp in complex with full-length viral ssDNA. We show that gVp binds ssDNA with an average distance of 5.5 Å between the amino acid residues of the protein and the phosphate backbone of the DNA. Torsion angle predictions and chemical shift perturbations indicate that there were considerable structural changes throughout the protein upon complexation with ssDNA, with the most significant variations occurring at the ssDNA binding loop and the C-terminus. Our data suggests that the structure of gVp in complex with ssDNA differs significantly from the structure of gVp in the free form, presumably to allow for cooperative binding of dimers to form the filamentous phage particle.


Subject(s)
Bacteriophages , DNA, Single-Stranded , Amino Acid Sequence , Bacteriophages/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , DNA-Binding Proteins/metabolism , Myoviridae/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Viral Proteins/metabolism
7.
J Am Chem Soc ; 144(21): 9451-9457, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35594149

ABSTRACT

Mechanisms of nucleation and growth of crystals are still attracting a great deal of interest, in particular with recent advances in experimental techniques aimed at studying such phenomena. Studies of kinetic isotope effects in various reactions have been useful for elucidating reaction mechanisms, and it is believed that the same may apply for crystal formation kinetics. In this work, we present a kinetic study of the formation of europium-doped terbium phosphate nanocrystals under acidic conditions, including a strong H/D isotope effect. The nanocrystal growth process could be quantitatively followed through monitoring of the europium luminescence intensity. Hence, such lanthanide-based nanocrystals may serve as unique model systems for studying crystal nucleation and growth mechanisms. By combining the luminescence and NMR kinetics data, we conclude that the observed delayed nucleation occurs due to initial formation of pre-nucleation clusters or polymers of the lanthanide and phosphate ions, which undergo a phase transformation to crystal nuclei and further grow by cluster attachment. A scaling behavior observed on comparison of the H2O and D2O-based pre-nucleation and nanocrystal growth kinetics led us to conclude that both pre-nucleation and nanocrystal growth processes are of similar chemical nature.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Europium , Isotopes , Kinetics , Lanthanum , Nanoparticles/chemistry , Phosphates
8.
Biomol NMR Assign ; 16(2): 181-185, 2022 10.
Article in English | MEDLINE | ID: mdl-35460051

ABSTRACT

The non-structural gene V protein (pV, gVp) from fd virus is a non-specific single-stranded DNA binding protein. The role of gVp is to sequester the single-stranded DNA thus reducing the generation of the replicative DNA form and leading to the formation of progeny phage. In this study, we assigned the 13C and 15N resonances of the crystalline unbound protein by magic-angle spinning solid-state NMR. The secondary structure predicted by the NMR shifts is in excellent agreement with the X-ray structure of the same 87-residue protein.


Subject(s)
Bacteriophage M13 , DNA, Single-Stranded , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , DNA/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular
9.
J Magn Reson ; 338: 107191, 2022 05.
Article in English | MEDLINE | ID: mdl-35325706

ABSTRACT

We demonstrate a new resonance condition that obeys the relation Δδ=nνR/2, where Δδ is the chemical shift difference between two homonuclear-coupled spins, νR is the magic-angle spinning speed and n is an integer. This modulation on the rotational resonance recoupling condition is obtained by the application of rotor-synchronous 1H pulses when at least one proton is dipolar-coupled to one of the homonuclear spins. We suggest a new experimental scheme entitled 'pulse induced resonance with angular dependent total enhancement' (PIRATE) that can enhance proton-driven spin diffusion by the application of a single 1H pulse every rotor period. Experimental evidence is demonstrated on the two carbon spins of glycine and on the Y21M mutant of fd bacteriophage virus. Numerical simulations reveal the existence of the resonances and report on the important interactions governing these phenomena.


Subject(s)
Magnetic Resonance Imaging , Protons , Glycine/chemistry , Heart Rate , Magnetic Resonance Spectroscopy/methods
10.
Annu Rev Virol ; 8(1): 219-237, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34586870

ABSTRACT

Techniques for atomic-resolution structural biology have evolved during the past several decades. Breakthroughs in instrumentation, sample preparation, and data analysis that occurred in the past decade have enabled characterization of viruses with an unprecedented level of detail. Here we review the recent advances in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for structural analysis of viruses and viral assemblies. MAS NMR is a powerful method that yields information on 3D structures and dynamics in a broad range of experimental conditions. After a brief introduction, we discuss recent structural and functional studies of several viruses investigated with atomic resolution at various levels of structural organization, from individual domains of a membrane protein reconstituted into lipid bilayers to virus-like particles and intact viruses. We present examples of the unique information revealed by MAS NMR about drug binding, conduction mechanisms, interactions with cellular host factors, and DNA packaging in biologically relevant environments that are inaccessible by other methods.


Subject(s)
Membrane Proteins , Viruses , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Viral Structures
11.
Magn Reson Chem ; 59(9-10): 908-919, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33729630

ABSTRACT

Molecular structure determination is the basis for understanding chemical processes and the property of materials. The direct dependence of the magnetic dipolar interaction on the distance makes solid-state nuclear magnetic resonance (NMR) an excellent tool to study molecular structure when X-ray crystallography fails to provide atomic-resolution data. Although techniques to measure distances between pairs of isolated nuclear spin-1/2 pairs are routine and easy to implement using the rotational echo double resonance (REDOR) experiment (Gullion & Schaefer, 1989), the existence of a nucleus with a spin > 1/2, appearing in approximately 75% of the elements in the periodic table, poses a challenge due to difficulties stemming from the large nuclear quadrupolar coupling constant (QCC). This mini-review presents the existing solid-state magic-angle spinning NMR techniques aimed toward the efficient and accurate determination of internuclear distances between a spin-1/2 and a "quadrupolar" nucleus having a spin larger than one half. Analytical expressions are provided for the various recoupling curves stemming from different techniques, and a coherent nomenclature for these various techniques is suggested. Treatment of some special cases such as multiple spin effects and spins with close Larmor frequencies is also discussed. The most advanced methods can recouple spins with quadrupolar frequencies up to tens of megahertz and beyond, expanding the distance measurement capabilities of solid-state NMR to an increasingly growing number of applications and nuclear spin systems.

12.
Biophys Rep (N Y) ; 1(2): 100027, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-36425459

ABSTRACT

RNA is a polymer with pivotal functions in many biological processes. RNA structure determination is thus a vital step toward understanding its function. The secondary structure of RNA is stabilized by hydrogen bonds formed between nucleotide basepairs, and it defines the positions and shapes of functional stem-loops, internal loops, bulges, and other functional and structural elements. In this work, we present a methodology for studying large intact RNA biomolecules using homonuclear 15N solid-state NMR spectroscopy. We show that proton-driven spin-diffusion experiments with long mixing times, up to 16 s, improved by the incorporation of multiple rotor-synchronous 1H inversion pulses (termed radio-frequency dipolar recoupling pulses), reveal key hydrogen-bond contacts. In the full-length RNA isolated from MS2 phage, we observed strong and dominant contributions of guanine-cytosine Watson-Crick basepairs, and beyond these common interactions, we observe a significant contribution of the guanine-uracil wobble basepairs. Moreover, we can differentiate basepaired and non-basepaired nitrogen atoms. Using the improved technique facilitates characterization of hydrogen-bond types in intact large-scale RNA using solid-state NMR. It can be highly useful to guide secondary structure prediction techniques and possibly structure determination methods.

13.
Magn Reson Chem ; 59(3): 237-246, 2021 03.
Article in English | MEDLINE | ID: mdl-32603513

ABSTRACT

An important step in the process of protein research by NMR is the assignment of chemical shifts. In the coat protein of IKe bacteriophage, there are 53 residues making up a long helix resulting in relatively high spectral ambiguity. Assignment thus requires the collection of a set of three-dimensional (3D) experiments and the preparation of sparsely labeled samples. Increasing the dimensionality can facilitate fast and reliable assignment of IKe and of larger proteins. Recent progress in nonuniform sampling techniques made the application of multidimensional NMR solid-state experiments beyond 3D more practical. 4D 1 H-detected experiments have been demonstrated in high-fields and at spinning speeds of 60 kHz and higher but are not practical at spinning speeds of 10-20 kHz for fully protonated proteins. Here, we demonstrate the applicability of a nonuniformly sampled 4D 13 C/15 N-only correlation experiment performed at a moderate field of 14.1 T, which can incorporate sufficiently long acquisition periods in all dimensions. We show how a single CANCOCX experiment, supported by several 2D carbon-based correlation experiments, is utilized for the assignment of heteronuclei in the coat protein of the IKe bacteriophage. One sparsely labeled sample was used to validate sidechain assignment of several hydrophobic-residue sidechains. A comparison to solution NMR studies of isolated IKe coat proteins embedded in micelles points to key residues involved in structural rearrangement of the capsid upon assembly of the virus. The benefits of 4D to a quicker assignment are discussed, and the method may prove useful for studying proteins at relatively low fields.


Subject(s)
Bacteriophage IKe/chemistry , Capsid Proteins/analysis , Capsid/chemistry , Capsid Proteins/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Micelles , Nitrogen Isotopes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation, alpha-Helical
14.
Prog Nucl Magn Reson Spectrosc ; 114-115: 192-210, 2019.
Article in English | MEDLINE | ID: mdl-31779880

ABSTRACT

Magic-angle spinning (MAS) solid-state NMR has provided structural insights into various bacteriophage systems including filamentous, spherical, and tailed bacteriophage viruses. A variety of methodologies have been utilized including elementary two and three-dimensional assignment experiments, proton-detection techniques at fast spinning speeds, non-uniform sampling, structure determination protocols, conformational dynamics revealed by recoupling of anisotropic interactions, and enhancement by dynamic nuclear polarization. This review summarizes most of the studies performed during the last decade by MAS techniques and makes comparisons with prior knowledge obtained from static and solution NMR techniques. Chemical shifts for the capsids of the various systems are reported and analyzed, and DNA shifts are reported and discussed in the context of general high molecular-weight DNA molecules. Chemical shift and torsion angle prediction techniques are compared and applied to the various phage systems. The structures of the intact M13 filamentous bacteriophage and that of the Acinetobacter phage AP205 capsid, determined using MAS-based experimental data, are presented. Finally, filamentous phages, which are highly rigid systems, show interesting dynamics at the interface of the capsid and DNA, and their mutual electrostatic interactions are shown to be mediated by highly mobile positively charged residues. Novel results obtained from recoupling the chemical shift anisotropy of a single arginine in IKe phage, which is in contact with its DNA, further demonstrate this point. MAS NMR thus provides many new insights into phage structure, and on the other hand the richness, complexity and variety of bacteriophage systems provide opportunities for new NMR methodologies and technique developments.


Subject(s)
Bacteriophage M13/chemistry , Magnetic Resonance Spectroscopy/methods , Anisotropy , Bacteriophage M13/genetics , Capsid/chemistry , DNA, Viral/chemistry , DNA, Viral/genetics
15.
J Magn Reson ; 308: 106559, 2019 11.
Article in English | MEDLINE | ID: mdl-31345769

ABSTRACT

The combination of a phase-modulated (PM) saturation pulse and symmetry-based dipolar recoupling into a rotational-echo saturation-pulse double-resonance (RESPDOR) sequence has been employed to measure 1H-14N distances. Such a measurement is challenging owing to the quadrupolar interaction of 14N nucleus and the intense 1H-1H homonuclear dipolar interactions. Thanks to the recent advances in probe technology, the homonuclear dipolar interaction can be sufficiently suppressed at a fast MAS frequency (νR ≥ 60 kHz). PM pulse is robust to large variations of parameters on quadrupolar spins, but it has not been demonstrated under very fast MAS conditions. On the other hand, the RESPDOR sequence is applicable to such condition when it employs symmetry-based pulses during the recoupling period, but a prior knowledge on the system is required. In this article, we demonstrated the PM-RESPDOR combination for providing accurate 1H-14N distances at a very fast MAS frequency of 70 kHz on two samples, namely L-tyrosine⋅HCl and N-acetyl-L-alanine. This sequence, supported by simulations and experiments, has shown its feasibility at νR = 70 kHz as well as the robustness to the 14N quadrupolar interaction. It is applicable to a wide range of 1H-14N dipolar coupling constants when a radio frequency field on the 14N channel is approximately 80 kHz or more, while the PM pulse length lasts 10 rotor periods. For the first time, multiple 1H-14N heteronuclear dipolar couplings, thus multiple quantitative distances, are simultaneously and reliably extracted by fitting the experimental fraction curves with the analytical expression. The size of the 1H-14N dipolar interaction is solely used as a fitting parameter. These determined distances are in excellent agreement with those derived from diffraction techniques.

17.
Chem Commun (Camb) ; 55(39): 5643-5646, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31026003

ABSTRACT

Proton detection and phase-modulated pulse saturation enable the measurement of spin-lattice relaxation times of "invisible" quadrupolar nuclei with extensively large quadrupolar couplings. For nitrogen-14, efficient cross-polarization is obtained with a long-duration preparation pulse. The experiment paves the way to the characterization of a large variety of materials containing halogens, metals and more.

18.
Proc Natl Acad Sci U S A ; 116(12): 5493-5498, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819888

ABSTRACT

The filamentous bacteriophage IKe infects Escherichia coli cells bearing IncN pili. We report the cryo-electron microscopy structure of the micrometer-long IKe viral particle at a resolution of 3.4 Å. The major coat protein [protein 8 (p8)] consists of 47 residues that fold into a ∼68-Å-long helix. An atomic model of the coat protein was built. Five p8 helices in a horizontal layer form a pentamer, and symmetrically neighboring p8 layers form a right-handed helical cylinder having a rise per pentamer of 16.77 Å and a twist of 38.52°. The inner surface of the capsid cylinder is positively charged and has direct interactions with the encapsulated circular single-stranded DNA genome, which has an electron density consistent with an unusual left-handed helix structure. Similar to capsid structures of other filamentous viruses, strong capsid packing in the IKe particle is maintained by hydrophobic residues. Despite having a different length and large sequence differences from other filamentous phages, π-π interactions were found between Tyr9 of one p8 and Trp29 of a neighboring p8 in IKe that are similar to interactions observed in phage M13, suggesting that, despite sequence divergence, overall structural features are maintained.


Subject(s)
Bacteriophage IKe/ultrastructure , Bacteriophage IKe/genetics , Bacteriophage IKe/physiology , Capsid Proteins/genetics , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , DNA, Single-Stranded/genetics , DNA, Single-Stranded/ultrastructure , Models, Molecular , Sequence Alignment , Virus Assembly
19.
J Biomol NMR ; 72(1-2): 55-67, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30141148

ABSTRACT

Determination of chemical shift anisotropy (CSA) in immobilized proteins and protein assemblies is one of several tools to determine protein dynamics on the timescales of microseconds and faster. The large CSA values of C=O groups in the rigid limit makes them in particular attractive for measurements of large amplitude motions, or their absence. In this study, we implement a 3D R-symmetry-based sequence that recouples the second spatial component of the 13C CSA with the corresponding isotropic 13C'-13C cross-peaks in order to probe backbone and sidechain dynamics in an intact fd-y21m filamentous phage viral capsid. The assignment of the isotropic cross-peaks and the analysis were conducted automatically using a new software named 'Raven'. The software can be utilized to auto-assign any 2D 13C-13C or 15N-13C spectrum given a previously-determined assignment table and generates simultaneously all intensity curves acquired in the third dimension. Here, all CSA spectra were automatically generated, and subsequently matched against a simulated set of CSA curves to yield their values. For the multi-copy, 50-residue-long protein capsid of fd-y21m, the backbone of the helical region is rigid, with reduced CSA values of ~ 12.5 kHz (~ 83 ppm). The N-terminus shows motionally-averaged CSA lineshapes and the carboxylic sidechain groups of four residues indicate large amplitude motions for D4, D5, D12 and E20. The current results further strengthen our previous studies of 15N CSA values and are in agreement with qualitative analysis of 13C-13C dipolar build-up curves, which were automatically obtained using our software. Our automated analysis technique is general and can be applied to study protein structure and dynamics, with data resulting from experiments that probe different variables such as relaxation rates and scaled anisotropic interactions.


Subject(s)
Anisotropy , Bacteriophage M13/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Carbon Isotopes , Molecular Dynamics Simulation , Motion , Protein Conformation , Software , Time Factors
20.
Chemistry ; 24(35): 8737-8741, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29660798

ABSTRACT

The capsid dynamics of filamentous bacteriophages is related to their function, stability, and interactions with the genome, and can be assessed by measuring the chemical shift anisotropy (CSA) of 15 N amides, which are sensitive to large amplitude motions. In this study, CSA recoupling experiments under magic-angle spinning NMR were used to probe the dynamics of the y21m capsid mutant of fd bacteriophage. Based on fitting the generated CSA lineshapes, residues located in the N-terminus undergo increased motional amplitudes suggesting its global motion, whereas other backbone residues are rigid, and imply a tight hydrophobic packing of the phage.

SELECTION OF CITATIONS
SEARCH DETAIL
...