Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5179, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898037

ABSTRACT

Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.


Subject(s)
Antiviral Agents , Dengue Virus , Flavivirus , Proteolysis , Virus Internalization , Humans , Proteolysis/drug effects , Animals , Antiviral Agents/pharmacology , Flavivirus/drug effects , Flavivirus/genetics , Flavivirus/metabolism , Virus Internalization/drug effects , Dengue Virus/drug effects , Dengue Virus/physiology , Dengue Virus/genetics , Culicidae/virology , Ubiquitin-Protein Ligases/metabolism , Viral Envelope Proteins/metabolism , Cell Line
2.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854003

ABSTRACT

Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here we report the development of small molecule degraders of the envelope (E) protein of dengue virus. We developed two classes of bivalent E-degraders, linking two previously reported E-binding small molecules, GNF-2 and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E degrader with ABL inhibition while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof-of-concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class antiviral drugs.

3.
Chem Sci ; 14(41): 11365-11373, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37886078

ABSTRACT

Since their discovery in 1887, rhodamines have become indispensable fluorophores for biological imaging. Recent studies have extensively explored heteroatom substitution at the 10' position and a variety of substitution patterns on the 3',6' nitrogens. Although 3-carboxy- and 3-sulfono-rhodamines were first reported in the 19th century, the 3-phosphono analogues have never been reported. Here, we report a mild, scalable synthetic route to 3-phosphonorhodamines. We explore the substrate scope and investigate mechanistic details of an exogenous acid-free condensation. Tetramethyl-3-phosphonorhodamine (phosTMR) derivatives can be accessed on the 1.5 mmol scale in up to 98% yield (2 steps). phosTMR shows a 12- to 500-fold increase in water solubility relative to 3-carboxy and 3-sulfonorhodamine derivatives and has excellent chemical stability. Additionally, phosphonates allow for chemical derivatization; esterification of phosTMR facilitates intracellular delivery with localization profiles that differ from 3-carboxyrhodamines. The free phosphonate can be incorporated into a molecular wire scaffold to create a phosphonated rhodamine voltage reporter, phosphonoRhoVR. PhosRhoVR 1 can be synthesized in just 6 steps, with an overall yield of 37% to provide >400 mg of material, compared to a 6-step, ∼2% yield for the previously reported RhoVR 1. PhosRhoVR 1 possesses excellent voltage sensitivity (37% ΔF/F) and a 2-fold increase in cellular brightness compared to RhoVR 1.

4.
Cureus ; 15(8): e42919, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664280

ABSTRACT

Lecythophora hoffmannii is a saprophytic fungus commonly found in the environment. Able to be isolated from soil, it is frequently associated with the soft rot of wood. Although human infections are not common, they have been reported, and have ranged from keratitis and soft-tissue infection to deep osteomyelitis and endometritis. Here we report a case of soft-tissue infection with this pathogen along with successful treatment with standard-dose terbinafine when other agents were unavailable. The true prevalence of infections with this pathogen is unclear and further data are needed to determine optimal therapy.

5.
Mol Ther ; 31(8): 2309-2325, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37312454

ABSTRACT

Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.


Subject(s)
Mesothelin , Neoplasms , Humans , GPI-Linked Proteins/genetics , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasms/therapy , T-Lymphocytes
6.
J Neurosci ; 43(14): 2482-2496, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36849415

ABSTRACT

Cortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuropsychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of electrical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes traveling waves as fundamental to cortical information-processing, but we lack an understanding of how to control wave properties despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via asymmetric activation of inhibitory interneurons. We found that pyramidal cells and basket cells are highly activated by the anodal electrode and minimally activated by the cathodal electrodes, while Martinotti cells are moderately activated by both electrodes but exhibit a slight preference for cathodal stimulation. Network model simulations found that this asymmetrical activation results in a traveling wave in superficial excitatory cells that propagates unidirectionally away from the electrode array. Our study reveals how asymmetric electrical stimulation can easily facilitate traveling waves by relying on two distinct types of inhibitory interneuron activity to shape and sustain the spatiotemporal dynamics of endogenous local circuit mechanisms.SIGNIFICANCE STATEMENT Electrical brain stimulation is becoming increasingly useful to probe the workings of brain and to treat a variety of neuropsychiatric disorders. However, stimulation is currently performed in a trial-and-error fashion as there are no methods to predict how different electrode arrangements and stimulation paradigms will affect brain functioning. In this study, we demonstrate a hybrid modeling approach, which makes experimentally testable predictions that bridge the gap between the microscale effects of multielectrode stimulation and the resultant circuit dynamics at the mesoscale. Our results show how custom stimulation paradigms can induce predictable, persistent changes in brain activity, which has the potential to restore normal brain function and become a powerful therapy for neurological and psychiatric conditions.


Subject(s)
Neurons , Pyramidal Cells , Pyramidal Cells/physiology , Brain/physiology , Interneurons/physiology , Electrodes , Models, Neurological , Electric Stimulation
7.
PLoS Comput Biol ; 18(11): e1010628, 2022 11.
Article in English | MEDLINE | ID: mdl-36399437

ABSTRACT

Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.


Subject(s)
Learning , Neural Networks, Computer , Learning/physiology , Sleep , Brain
8.
J Am Chem Soc ; 143(16): 6194-6201, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33797899

ABSTRACT

Xanthene fluorophores, like fluorescein, have been versatile molecules across diverse fields of chemistry and life sciences. Despite the ubiquity of 3-carboxy and 3-sulfonofluorescein for the last 150 years, to date, no reports of 3-phosphonofluorescein exist. Here, we report the synthesis, spectroscopic characterization, and applications of 3-phosphonofluoresceins. The absorption and emission of 3-phosphonofluoresceins remain relatively unaltered from the parent 3-carboxyfluorescein. 3-Phosphonofluoresceins show enhanced water solubility compared to 3-carboxyfluorescein and persist in an open, visible light-absorbing state even at low pH and in low dielectric media while 3-carboxyfluoresceins tend to lactonize. In contrast, the spirocyclization tendency of 3-phosphonofluoresceins can be modulated by esterification of the phosphonic acid. The bis-acetoxymethyl ester of 3-phosphonofluorescein readily enters living cells, showing excellent accumulation (>6x) and retention (>11x), resulting in a nearly 70-fold improvement in cellular brightness compared to 3-carboxyfluorescein. In a complementary fashion, the free acid form of 3-phosphonofluorescein does not cross cellular membranes, making it ideally suited for incorporation into a voltage-sensing scaffold. We develop a new synthetic route to functionalized 3-phosphonofluoresceins to enable the synthesis of phosphono-voltage sensitive fluorophores, or phosVF2.1.Cl. Phosphono-VF2.1.Cl shows excellent membrane localization, cellular brightness, and voltage sensitivity (26% ΔF/F per 100 mV), rivaling that of sulfono-based VF dyes. In summary, we develop the first synthesis of 3-phosphonofluoresceins, characterize the spectroscopic properties of this new class of xanthene dyes, and utilize these insights to show the utility of 3-phosphonofluoresceins in intracellular imaging and membrane potential sensing.


Subject(s)
Fluorescein/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane Permeability , Cyclization , Fluorescein/chemical synthesis , Fluorescein/metabolism , Fluoresceins/chemistry , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Spectrometry, Fluorescence
9.
Transfus Apher Sci ; 60(1): 103065, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33468407

ABSTRACT

Both natural killer (NK) cells and T cells demonstrate potent antitumor responses in many settings. NK cells, unlike T cells, are not the primary mediators of graft-versus-host disease (GVHD). Redirection of T cells with chimeric antigen receptors (CAR) has helped to overcome tumor escape from endogenous T cells. NK cells expressing CARs are a promising new therapy to treat malignancy. Clinical biomanufacturing of CAR NK cells can begin with NK cells derived from many different sources including adult peripheral blood-derived NK cells, cord blood-derived NK cells, cell line-derived NK cells, or stem cell-derived NK cells. Manufacturing protocols may include isolation of NK cells, activation, expansion, and genetic modification to express the chimeric antigen receptors. Clinical trials have tested both unmodified and CAR NK cells with encouraging results. The next stage in clinical development of CAR NK cells represents a highly exciting new frontier in clinical cell therapy as well as understanding basic NK cell biology. The purpose of this review is to provide the reader with a fundamental understanding of the core concepts in CAR NK cell manufacturing, specifically highlighting differences between CAR T cell manufacturing and focusing on future directions in the field.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Receptors, Chimeric Antigen/immunology , Humans
11.
Nat Cancer ; 1(5): 533-545, 2020 05.
Article in English | MEDLINE | ID: mdl-32984844

ABSTRACT

Cancer cells express high levels of PD-L1, a ligand of the PD-1 receptor on T cells, allowing tumors to suppress T cell activity. Clinical trials utilizing antibodies that disrupt the PD-1/PD-L1 checkpoint have yielded remarkable results, with anti-PD-1 immunotherapy approved as first-line therapy for lung cancer patients. We used CRISPR-based screening to identify regulators of PD-L1 in human lung cancer cells, revealing potent induction of PD-L1 upon disruption of heme biosynthesis. Impairment of heme production activates the integrated stress response (ISR), allowing bypass of inhibitory upstream open reading frames in the PD-L1 5' UTR, resulting in enhanced PD-L1 translation and suppression of anti-tumor immunity. We demonstrated that ISR-dependent PD-L1 translation requires the translation initiation factor eIF5B. eIF5B overexpression, which is frequent in lung adenocarcinomas and associated with poor prognosis, is sufficient to induce PD-L1. These findings illuminate mechanisms of immune checkpoint activation and identify targets for therapeutic intervention.


Subject(s)
B7-H1 Antigen , Eukaryotic Initiation Factors , Lung Neoplasms , B7-H1 Antigen/genetics , Eukaryotic Initiation Factors/genetics , Heme/biosynthesis , Humans , Lung Neoplasms/genetics
12.
PLoS Comput Biol ; 15(8): e1007277, 2019 08.
Article in English | MEDLINE | ID: mdl-31449517

ABSTRACT

Despite its critical importance in experimental and clinical neuroscience, at present there is no systematic method to predict which neural elements will be activated by a given stimulation regime. Here we develop a novel approach to model the effect of cortical stimulation on spiking probability of neurons in a volume of tissue, by applying an analytical estimate of stimulation-induced activation of different cell types across cortical layers. We utilize the morphology and properties of axonal arborization profiles obtained from publicly available anatomical reconstructions of the twelve main categories of neocortical neurons to derive the dependence of activation probability on cell type, layer and distance from the source. We then propagate this activity through the local network incorporating connectivity, synaptic and cellular properties. Our work predicts that (a) intracranial cortical stimulation induces selective activation across cell types and layers; (b) superficial anodal stimulation is more effective than cathodal at cell activation; (c) cortical surface stimulation focally activates layer I axons, and (d) there is an optimal stimulation intensity capable of eliciting cell activation lasting beyond the end of stimulation. We conclude that selective effects of cortical electrical stimulation across cell types and cortical layers are largely driven by their different axonal arborization and myelination profiles.


Subject(s)
Neurons/physiology , Recruitment, Neurophysiological , Animals , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Computational Biology , Computer Simulation , Electric Stimulation , Models, Neurological , Nerve Net/cytology , Nerve Net/physiology , Rats
14.
Nature ; 542(7640): 197-202, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28114302

ABSTRACT

MicroRNAs (miRNAs) perform critical functions in normal physiology and disease by associating with Argonaute proteins and downregulating partially complementary messenger RNAs (mRNAs). Here we use clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) genome-wide loss-of-function screening coupled with a fluorescent reporter of miRNA activity in human cells to identify new regulators of the miRNA pathway. By using iterative rounds of screening, we reveal a novel mechanism whereby target engagement by Argonaute 2 (AGO2) triggers its hierarchical, multi-site phosphorylation by CSNK1A1 on a set of highly conserved residues (S824-S834), followed by rapid dephosphorylation by the ANKRD52-PPP6C phosphatase complex. Although genetic and biochemical studies demonstrate that AGO2 phosphorylation on these residues inhibits target mRNA binding, inactivation of this phosphorylation cycle globally impairs miRNA-mediated silencing. Analysis of the transcriptome-wide binding profile of non-phosphorylatable AGO2 reveals a pronounced expansion of the target repertoire bound at steady-state, effectively reducing the active pool of AGO2 on a per-target basis. These findings support a model in which an AGO2 phosphorylation cycle stimulated by target engagement regulates miRNA:target interactions to maintain the global efficiency of miRNA-mediated silencing.


Subject(s)
Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Gene Silencing , MicroRNAs/genetics , Amino Acid Sequence , Argonaute Proteins/chemistry , CRISPR-Cas Systems/genetics , Casein Kinase II/metabolism , HCT116 Cells , Humans , MicroRNAs/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Substrate Specificity
15.
Clin Orthop Relat Res ; 470(9): 2528-40, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22798134

ABSTRACT

BACKGROUND: Bone marrow plays a key role in bone formation and healing. Although a subset of marrow explants ossifies in vitro without excipient osteoinductive factors, some explants do not undergo ossification. The disparity of outcome suggests a significant heterogeneity in marrow tissue in terms of its capacity to undergo osteogenesis. QUESTIONS/PURPOSES: We sought to identify: (1) proteins and signaling pathways associated with osteogenesis by contrasting the proteomes of ossified and poorly ossified marrow explants; and (2) temporal changes in proteome and signaling pathways of marrow ossification in the early and late phases of bone formation. METHODS: Explants of marrow were cultured. Media conditioned by ossified (n = 4) and poorly ossified (n = 4) subsets were collected and proteins unique to each group were identified by proteomic analysis. Proteomic data were processed to assess proteins specific to the early phase (Days 1-14) and late phase (Days 15-28) of the culture period. Pathways involved in bone marrow ossification were identified through bioinformatics. RESULTS: Twenty-eight proteins were unique to ossified samples and eight were unique to poorly ossified ones. Twelve proteins were expressed during the early phase and 15 proteins were specific to the late phase. Several identified pathways corroborated those reported for bone formation in the literature. Immune and inflammatory pathways were specific to ossified samples. CONCLUSIONS: The marrow explant model indicates the inflammatory and immune pathways to be an integral part of the osteogenesis process.


Subject(s)
Bone Marrow/immunology , Bone Marrow/pathology , Inflammation Mediators/metabolism , Ossification, Heterotopic , Osteogenesis , Signal Transduction , Animals , Bone Marrow/diagnostic imaging , Computational Biology , Culture Media, Conditioned/metabolism , Proteomics/methods , Rats , Rats, Long-Evans , Time Factors , Tissue Culture Techniques , X-Ray Microtomography
16.
Ecotoxicol Environ Saf ; 73(8): 1867-74, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20825991

ABSTRACT

Methoprene is a pesticide widely used for mosquito control. It is an endocrine disruptor, acting as an analog of juvenile hormone. While targeting insect larvae, it also impacts non-target animals including crustaceans. Anecdotal reports suggested that methoprene has unintended effects on adult arthropods. Earlier, we documented effects in adult lobsters at the metabolic and gene expression levels. In this study we have documented morphologic corollaries to our prior observations. We examined the light and electron microscopic changes in the hepatopancreas of adult lobsters following in vivo acute exposure to methoprene. Changes by light and electron microscopy levels were evident following exposure to sub-lethal concentrations of methoprene for 24h. Tissue from exposed animals showed the formation of extensive cytoplasmic spaces (vesiculation) with disruption and loss of specific subcellular organelles. The findings provide morphologic correlates to the metabolic and genomic alterations we have observed in previous investigations.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Exposure/analysis , Hepatopancreas/drug effects , Methoprene/toxicity , Nephropidae/drug effects , Pesticides/toxicity , Acute Disease , Animals , Dose-Response Relationship, Drug , Gene Expression/drug effects , Genome/drug effects , Hepatopancreas/metabolism , Hepatopancreas/ultrastructure , Microscopy, Electron , Nephropidae/genetics , Nephropidae/metabolism , Nephropidae/ultrastructure , Organelles/drug effects , Organelles/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL