Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37790473

ABSTRACT

BMP2 signaling plays a pivotal role in odontoblast differentiation and maturation during odontogenesis. Teeth lacking Bmp2 exhibit a morphology reminiscent of dentinogenesis imperfecta (DGI), associated with mutations in dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) genes. Mechanisms by which BMP2 signaling influences expressions of DSPP and DMP1 and contributes to DGI remain elusive. To study the roles of BMP2 in dentin development, we generated Bmp2 conditional knockout (cKO) mice. Through a comprehensive approach involving RNA-seq, immunohistochemistry, promoter activity, ChIP, and Re-ChIP, we investigated downstream targets of Bmp2. Notably, the absence of Bmp2 in cKO mice led to dentin insufficiency akin to DGI. Disrupted Bmp2 signaling was linked to decreased expression of Dspp and Dmp1, as well as alterations in intracellular translocation of transcription factors Dlx3 and Sp7. Intriguingly, upregulation of Dlx3, Dmp1, Dspp, and Sp7, driven by BMP2, fostered differentiation of dental mesenchymal cells and biomineralization. Mechanistically, BMP2 induced phosphorylation of Dlx3, Sp7, and histone acetyltransferase GCN5 at Thr and Tyr residues, mediated by Akt and Erk42/44 kinases. This phosphorylation facilitated protein nuclear translocation, promoting interactions between Sp7 and Dlx3, as well as with GCN5 on Dspp and Dmp1 promoters. The synergy between Dlx3 and Sp7 bolstered transcription of Dspp and Dmp1. Notably, BMP2-driven GCN5 acetylated Sp7 and histone H3, while also recruiting RNA polymerase II to Dmp1 and Dspp chromatins, enhancing their transcriptions. Intriguingly, BMP2 suppressed the expression of histone deacetylases. we unveil hitherto uncharted involvement of BMP2 in dental cell differentiation and dentine development through pAkt/pErk42/44/Dlx3/Sp7/GCN5/Dspp/Dmp1.

2.
Cells ; 11(14)2022 07 16.
Article in English | MEDLINE | ID: mdl-35883659

ABSTRACT

BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.


Subject(s)
Bone Morphogenetic Proteins , Dentin , Animals , Bone Morphogenetic Proteins/metabolism , Dentin/metabolism , Dentin/physiology , Humans , Mice , Odontoblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
3.
Front Genet ; 12: 702540, 2021.
Article in English | MEDLINE | ID: mdl-35003201

ABSTRACT

Bmp2 is essential for dentin development and formation. Bmp2 conditional knock-out (KO) mice display a similar tooth phenotype of dentinogenesis imperfecta (DGI). To elucidate a foundation for subsequent functional studies of cross talk between mRNAs and lncRNAs in Bmp2-mediated dentinogenesis, we investigated the profiling of lncRNAs and mRNAs using immortalized mouse dental Bmp2 flox/flox (iBmp2fx/fx) and Bmp2 knock-out (iBmp2ko/ko) papilla cells. RNA sequencing was implemented to study the expression of the lncRNAs and mRNAs. Quantitative real-time PCR (RT-qPCR) was used to validate expressions of lncRNAs and mRNAs. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to predict functions of differentially expressed genes (DEGs). Protein-protein interaction (PPI) and lncRNA-mRNA co-expression network were analyzed by using bioinformatics methods. As a result, a total of 22 differentially expressed lncRNAs (16 downregulated vs 6 upregulated) and 227 differentially expressed mRNAs (133 downregulated vs. 94 upregulated) were identified in the iBmp2ko/ko cells compared with those of the iBmp2fx/fx cells. RT-qPCR results showed significantly differential expressions of several lncRNAs and mRNAs which were consistent with the RNA-seq data. GO and KEGG analyses showed differentially expressed genes were closely related to cell differentiation, transcriptional regulation, and developmentally relevant signaling pathways. Moreover, network-based bioinformatics analysis depicted the co-expression network between lncRNAs and mRNAs regulated by Bmp2 in mouse dental papilla cells and symmetrically analyzed the effect of Bmp2 during dentinogenesis via coding and non-coding RNA signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...