Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Diagn Progn Res ; 7(1): 18, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37697410

ABSTRACT

A lack of biomarkers that detect drug-induced liver injury (DILI) accurately continues to hinder early- and late-stage drug development and remains a challenge in clinical practice. The Innovative Medicines Initiative's TransBioLine consortium comprising academic and industry partners is developing a prospective repository of deeply phenotyped cases and controls with biological samples during liver injury progression to facilitate biomarker discovery, evaluation, validation and qualification.In a nested case-control design, patients who meet one of these criteria, alanine transaminase (ALT) ≥ 5 × the upper limit of normal (ULN), alkaline phosphatase ≥ 2 × ULN or ALT ≥ 3 ULN with total bilirubin > 2 × ULN, are enrolled. After completed clinical investigations, Roussel Uclaf Causality Assessment and expert panel review are used to adjudicate episodes as DILI or alternative liver diseases (acute non-DILI controls). Two blood samples are taken: at recruitment and follow-up. Sample size is as follows: 300 cases of DILI and 130 acute non-DILI controls. Additional cross-sectional cohorts (1 visit) are as follows: Healthy volunteers (n = 120), controls with chronic alcohol-related or non-alcoholic fatty liver disease (n = 100 each) and patients with psoriasis or rheumatoid arthritis (n = 100, 50 treated with methotrexate) are enrolled. Candidate biomarkers prioritised for evaluation include osteopontin, glutamate dehydrogenase, cytokeratin-18 (full length and caspase cleaved), macrophage-colony-stimulating factor 1 receptor and high mobility group protein B1 as well as bile acids, sphingolipids and microRNAs. The TransBioLine project is enabling biomarker discovery and validation that could improve detection, diagnostic accuracy and prognostication of DILI in premarketing clinical trials and for clinical healthcare application.

2.
Cells ; 12(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36980305

ABSTRACT

Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival.


Subject(s)
Mitogen-Activated Protein Kinase 7 , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Humans , Endothelial Cells/metabolism , HeLa Cells , Mitogen-Activated Protein Kinase 7/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism
3.
Sci Rep ; 6: 25187, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27143246

ABSTRACT

Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Hepatocytes/drug effects , Hepatocytes/physiology , Spheroids, Cellular/drug effects , Spheroids, Cellular/physiology , Arabinofuranosyluracil/analogs & derivatives , Arabinofuranosyluracil/toxicity , Cells, Cultured , Humans , Models, Biological , Proof of Concept Study , Proteome/analysis
4.
Toxicol Sci ; 147(2): 412-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26160117

ABSTRACT

In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate 'hepatocyte-like' cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug.


Subject(s)
Hepatocytes/cytology , Liver/drug effects , Proteomics/methods , Blotting, Western , Cells, Cultured , Hep G2 Cells/cytology , Hep G2 Cells/drug effects , Hep G2 Cells/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Models, Biological
5.
Biochem Soc Trans ; 42(6): 1584-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25399574

ABSTRACT

Extracellular-signal-regulated kinase 5 (ERK5), also termed big MAPK1 (BMK1), is the most recently discovered member of the mitogen-activated protein kinase (MAPK) family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that, in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling and regulating tumour angiogenesis. The present review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function.


Subject(s)
Endothelium, Vascular/enzymology , Mitogen-Activated Protein Kinase 7/metabolism , Endothelium, Vascular/physiology , Humans
6.
J Proteomics ; 108: 171-87, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-24859727

ABSTRACT

The transcription factor Nrf2 is a master regulator of cellular defence: Nrf2 null mice (Nrf2((-/-))) are highly susceptible to chemically induced toxicities. We report a comparative iTRAQ-based study in Nrf2((-/-)) mice treated with a potent inducer, methyl-2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate (CDDO-me; bardoxolone -methyl), to define both the Nrf2-dependent basal and inducible hepatoproteomes. One thousand five hundred twenty-one proteins were fully quantified (FDR <1%). One hundred sixty-one were significantly different (P<0.05) between WT and Nrf2((-/-)) mice, confirming extensive constitutive regulation by Nrf2. Treatment with CDDO-me (3mg/kg; i.p.) resulted in significantly altered expression of 43 proteins at 24h in WT animals. Six proteins were regulated at both basal and inducible levels exhibiting the largest dynamic range of Nrf2 regulation: cytochrome P4502A5 (CYP2A5; 17.2-fold), glutathione-S-transferase-Mu 3 (GSTM3; 6.4-fold), glutathione-S-transferase Mu 1 (GSTM1; 5.9-fold), ectonucleoside-triphosphate diphosphohydrolase (ENTPD5; 4.6-fold), UDP-glucose-6-dehydrogenase (UDPGDH; 4.1-fold) and epoxide hydrolase (EPHX1; 3.0-fold). These proteins, or their products, thus provide a potential source of biomarkers for Nrf2 activity. ENTPD5 is of interest due to its emerging role in AKT signalling and, to our knowledge, this protein has not been previously shown to be Nrf2-dependent. Only two proteins altered by CDDO-me in WT animals were similarly affected in Nrf2((-/-)) mice, demonstrating the high degree of selectivity of CDDO-me for the Nrf2:Keap1 signalling pathway. BIOLOGICAL SIGNIFICANCE: The Nrf2:Keap1 signalling pathway is attracting considerable interest as a therapeutic target for different disease conditions. For example, CDDO-me (bardoxolone methyl) was investigated in clinical trials for the treatment of acute kidney disease, and dimethyl fumarate, recently approved for reducing relapse rate in multiple sclerosis, is a potent Nrf2 inducer. Such compounds have been suggested to act through multiple mechanisms; therefore, it is important to define the selectivity of Nrf2 inducers to assess the potential for off-target effects that may lead to adverse drug reactions, and to provide biomarkers with which to assess therapeutic efficacy. Whilst there is considerable information on the global action of such inducers at the mRNA level, this is the first study to catalogue the hepatic protein expression profile following acute exposure to CDDO-me in mice. At a dose shown to evoke maximal Nrf2 induction in the liver, CDDO-me appeared highly selective for known Nrf2-regulated proteins. Using the transgenic Nrf2((-/-)) mouse model, it could be shown that 97% of proteins induced in wild type mice were associated with a functioning Nrf2 signalling pathway. This analysis allowed us to identify a panel of proteins that were regulated both basally and following Nrf2 induction. Identification of these proteins, which display a large magnitude of variation in their expression, provides a rich source of potential biomarkers for Nrf2 activity for use in experimental animals, and which may be translatable to man to define individual susceptibility to chemical stress, including that associated with drugs, and also to monitor the pharmacological response to Nrf2 inducers.


Subject(s)
NF-E2-Related Factor 2/metabolism , Oleanolic Acid/analogs & derivatives , Proteome/biosynthesis , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Female , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/genetics , Humans , Kelch-Like ECH-Associated Protein 1 , Liver , Male , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , Oleanolic Acid/toxicity , Oxidoreductases/biosynthesis , Oxidoreductases/genetics , Proteome/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics
7.
Med Res Rev ; 33(5): 985-1080, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23090860

ABSTRACT

The decline in approval of new drugs during the past decade has led to a close analysis of the drug discovery process. One of the main reasons for attrition is preclinical toxicity, frequently attributed to the generation of protein-reactive drug metabolites. In this review, we present a critique of such reactive metabolites and evaluate the evidence linking them to observed toxic effects. Methodology for the characterization of reactive metabolites has advanced greatly in recent years, and is summarized first. Next, we consider the inhibition of key metabolic enzymes by electrophilic metabolites, as well as unfavorable drug-drug interactions that may ensue. One important class of protein-reactive metabolites, not linked conclusively to a toxic event, is acyl glucuronides. Their properties are discussed in light of the safety characteristics of carboxylic acid containing drugs. Many adverse drug reactions (ADRs) are known collectively as idiosyncratic events, that is, not predictable from knowledge of the pharmacology and pharmacokinetics of the parent compound. Observed ADRs may take various forms. Specific organ injury, particularly of the liver, is the most direct: we examine this in some detail. Moving to the cellular level, we also consider the upregulation of induced cellular processes. The related, but distinct, issue of hypersensitivity or allergic reactions to drugs and their metabolites, possibly via the immune system, is considered next. Finally, we discuss the impact of such data on the drug discovery process, both through early detection of reactive metabolites and informed synthetic design, which eliminates unfavorable functionality from drug candidates.


Subject(s)
Drug Design , Pharmaceutical Preparations/metabolism , Animals , Biomedical Research , Cytochrome P-450 Enzyme System , Drug-Related Side Effects and Adverse Reactions , Glucuronides/metabolism , Humans
8.
Cell Signal ; 24(11): 2187-96, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22800864

ABSTRACT

Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated protein kinase-1 (BMK1), is the most recently identified member of the mitogen-activated protein kinase (MAPK) family and consists of an amino-terminal kinase domain, with a relatively large carboxy-terminal of unique structure and function that makes it distinct from other MAPK members. It is ubiquitously expressed in numerous tissues and is activated by a variety of extracellular stimuli, such as cellular stresses and growth factors, to regulate processes such as cell proliferation and differentiation. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade plays a critical role in cardiovascular development and vascular integrity. Recent data points to a potential role in pathological conditions such as cancer and tumour angiogenesis. This review focuses on the physiological and pathological role of ERK5, the regulation of this kinase and the recent development of small molecule inhibitors of the ERK5 signalling cascade.


Subject(s)
Mitogen-Activated Protein Kinase 7/metabolism , Animals , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinases/metabolism , Nervous System/metabolism , Protein Kinase Inhibitors/chemistry , Signal Transduction
9.
J Proteomics ; 73(8): 1612-31, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20399915

ABSTRACT

The transcription factor Nrf2 regulates expression of multiple cellular defence proteins through the antioxidant response element (ARE). Nrf2-deficient mice (Nrf2(-/-)) are highly susceptible to xenobiotic-mediated toxicity, but the precise molecular basis of enhanced toxicity is unknown. Oligonucleotide array studies suggest that a wide range of gene products is altered constitutively, however no equivalent proteomics analyses have been conducted. To define the range of Nrf2-regulated proteins at the constitutive level, protein expression profiling of livers from Nrf2(-/-) and wild type mice was conducted using both stable isotope labelling (iTRAQ) and gel electrophoresis methods. To establish a robust reproducible list of Nrf2-dependent proteins, three independent groups of mice were analysed. Correlative network analysis (MetaCore) identified two predominant groups of Nrf2-regulated proteins. As expected, one group comprised proteins involved in phase II drug metabolism, which were down-regulated in the absence of Nrf2. Surprisingly, the most profound changes were observed amongst proteins involved in the synthesis and metabolism of fatty acids and other lipids. Importantly, we show here for the first time, that the enzyme ATP-citrate lyase, responsible for acetyl-CoA production, is negatively regulated by Nrf2. This latter finding suggests that Nrf2 is a major regulator of cellular lipid disposition in the liver.


Subject(s)
NF-E2-Related Factor 2/deficiency , Proteomics/methods , ATP Citrate (pro-S)-Lyase/genetics , Animals , Antioxidants/metabolism , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Lipid Metabolism/genetics , Liver/metabolism , Male , Mice , Mice, Transgenic , Up-Regulation
10.
J Proteome Res ; 9(5): 2658-68, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20373825

ABSTRACT

The liver is the major site of xenobiotic metabolism and detoxification. Primary cultures of hepatocytes are a vital tool in the development of new therapeutic agents but their utility is hindered by the rapid loss of phenotype. Hepatocytes cultured in a sandwich of extracellular matrix protein maintain better hepatic function compared with cells cultured as a monolayer but a wide-ranging proteomics study of the differences in cultures has never been performed. We characterize the changing phenotype of rat hepatocytes in primary culture using iTRAQ proteomics and systems biology network analysis of the identified, significantly regulated, proteins. A total of 754 unique proteins were identified from 4 independent experiments. Of these, 413 proteins were common to at least 3 experiments and 328 proteins were identified in all experiments. Both culture systems displayed altered expression of many common proteins. Network analysis showed that the primary functions of these proteins were in metabolic pathways, immune responses and cytoskeleton remodelling. Monolayer cultures uniquely regulate proteins mapping to pathways of oxidative stress and cell migration, whereas sandwich culture affected translation regulation and apoptosis pathways. These experiments provide a detailed proteomics data set to direct further work into maintaining hepatic phenotype using cultured primary hepatocytes and stem cell derived hepatocyte-like cells.


Subject(s)
Cell Dedifferentiation/physiology , Hepatocytes/cytology , Hepatocytes/metabolism , Peptide Mapping/methods , Proteomics/methods , Animals , Cell Culture Techniques , Cells, Cultured , Cluster Analysis , Collagen/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Drug Combinations , Gene Expression Regulation , Histocytochemistry , Isotope Labeling/methods , Laminin/metabolism , Male , Proteins/genetics , Proteins/metabolism , Proteoglycans/metabolism , Rats , Rats, Wistar , Signal Transduction , Systems Biology
11.
Zhong Yao Cai ; 32(5): 736-40, 2009 May.
Article in English | MEDLINE | ID: mdl-19771849

ABSTRACT

OBJECTIVE: To compare the antioxidant activity amongst the extract of Ginkgo biloba (EGb) and its main components, flavonoids and terpenoids. METHODS: The induction of EGb, flavonoids and terpenoids on a typical antioxidant enzyme, glutamate cysteine ligase catalytic subunit (GCLC), in cell lines was detected by Western-blot. The effects of EGb, flavonoids and terpenoids on superoxide anion radical (O2*(-)), hydroxyl radical (OH*), rat erythrocyte hemolysis and lipid peroxidation of rat liver homogenate were determined by respective activity methods. RESULTS: EGb and flavonoids but not terpenoids were demonstrated significantly to induce the antioxidant enzyme (GCLC), directly scavenge O2*(-), OH* and inhibit rat erythrocyte hemolysis and lipid peroxidation of rat liver homogenate. Compared these antioxidant activities between EGb and flavonoids, the activities of flavonoids were weaker than those of EGb, which contains similar dose of flavonoids. CONCLUSION: EGb has stronger antioxidant activities than flavonoids, but terpenoids did not show antioxidant activity in this research.


Subject(s)
Antioxidants/pharmacology , Free Radicals/metabolism , Ginkgo biloba/chemistry , Liver/drug effects , Plant Extracts/pharmacology , Animals , Antioxidants/isolation & purification , Blotting, Western , Cells, Cultured , Flavonoids/pharmacology , Free Radical Scavengers/pharmacology , Glutamate-Cysteine Ligase/metabolism , Hemolysis/drug effects , Lipid Peroxidation/drug effects , Liver/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Rats , Terpenes/pharmacology
12.
Phytomedicine ; 16(5): 451-5, 2009 May.
Article in English | MEDLINE | ID: mdl-19131229

ABSTRACT

The extract of Ginkgo biloba (EGb), containing 24% flavone glycosides and 6% terpenoids, is widely used to treat early-stage Alzheimer's disease, vascular dementia, peripheral claudication and vascular tinnitus. Its remarkable antioxidant activity has recently been demonstrated in both cell lines and animals. Glutathione-S-transferases (GSTs) are a class of important detoxification enzymes in the antioxidant system and GST-P1 is the major GST isoform highly expressed in human tissues. Over expression of GST-P1 protected prostate cells from cytotoxicity and DNA damage by the heterocyclic amine carcinogen, while inhibition of expression of GST-P1 by transfecting GST-P1 antisense cDNA or targeted deletion of GST-P1 has been found to sensitize cells to cytotoxic chemicals. It is obvious that induction of GST-P1 expression should be a promising alternative for chemoprevention. The present study aimed to investigate the induction effect of EGb on GST-P1 in HepG2 and Hep1c1c7 cell lines and found that GST-P1 was increased both at the expression and enzyme activity levels.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Ginkgo biloba , Glutathione Transferase/metabolism , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Antioxidants/therapeutic use , Cell Line , Cell Line, Tumor , DNA Damage/drug effects , Gene Expression/drug effects , Glutathione Transferase/genetics , Humans , Liver Neoplasms/drug therapy , Mice , Phytotherapy , Plant Extracts/therapeutic use , Protein Isoforms , RNA, Messenger/isolation & purification , RNA, Messenger/metabolism
13.
Proteomics ; 8(2): 301-15, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18203258

ABSTRACT

Chemically reactive metabolites (CRMs) are thought to be responsible for a number of adverse drug reactions through modification of critical proteins. Methods that defined the chemistry of protein modification at an early stage would provide invaluable tools for drug safety assessment. Here, human GST pi (GSTP) was exploited as a model target protein to determine the chemical, biochemical and functional consequences of exposure to the hepatotoxic CRM of paracetamol (APAP), N-acetyl-p-benzoquinoneimine (NAPQI). Site-specific, dose-dependent modification of Cys47 in native and His-tagged GSTP was revealed by MS, and correlated with inhibition of glutathione (GSH) conjugating activity. In addition, the adaptation of iTRAQ labelling technology to define precisely the quantitative relationship between covalent modification and protein function is described. Multiple reaction monitoring (MRM)-MS of GSTP allowed high sensitivity detection of modified peptides at physiological levels of exposure. Finally, a bioengineered mutant cytochrome P450 with a broad spectrum of substrate specificities was used in an in vitro reaction system to bioactivate APAP: in this model, GSTP trapped the CRM and exhibited both reduced enzyme activity and site-specific modification of the protein. These studies provide the foundation for the development of novel test systems to predict the toxicological potential of CRMs produced by new therapeutic agents.


Subject(s)
Glutathione S-Transferase pi/metabolism , Acetaminophen/metabolism , Acetaminophen/pharmacology , Amino Acid Sequence , Benzoquinones/pharmacology , Cells, Cultured , Cysteine/chemistry , Glutathione S-Transferase pi/antagonists & inhibitors , Humans , Imines/pharmacology , Models, Molecular , Molecular Sequence Data , Proteomics/methods
14.
Phytother Res ; 22(3): 367-71, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18167050

ABSTRACT

The extract of Ginkgo biloba (EGb), containing 24% flavone glycosides and 6% terpenoids, is widely used to treat early-stage Alzheimer's disease, vascular dementia, peripheral claudication and vascular tinnitus. Its marked antioxidant activity has recently been demonstrated in both cell lines and animals. Glutathione (GSH) plays an important role in the antioxidant system by conjugating to xenobiotics to facilitate their export from cells. Glutamate cysteine ligase (GCL) is the rate-limiting enzyme for GSH synthesis and its catalytic subunit (GCLC) determines this de novo synthesis. Thus, induction of GCLC is a strategy to enhance the antioxidant capability in cells. The present study aimed to investigate the induction effect of EGb on GCLC in HepG2 and Hep1c1c7 cell lines. Real-time PCR, Western blot and enzyme activity assay were used to detect induction and it was found that GCLC was induced by EGb in these two cell lines. It is suggested that the antioxidant activity of EGb is (or is partly) through the induction of GCLC.


Subject(s)
Catalytic Domain , Gene Expression Regulation, Plant/drug effects , Ginkgo biloba/chemistry , Glutamate-Cysteine Ligase/genetics , Plant Extracts/pharmacology , Actins/analysis , Actins/biosynthesis , Analysis of Variance , Animals , Antibodies/metabolism , Blotting, Western , Cell Line , Glutamate-Cysteine Ligase/analysis , Glutamate-Cysteine Ligase/biosynthesis , Glutathione/analysis , Humans , Mice
15.
Life Sci ; 80(17): 1586-91, 2007 Apr 03.
Article in English | MEDLINE | ID: mdl-17316704

ABSTRACT

The standard extract of Ginkgo biloba (EGb) has been demonstrated to possess remarkable antioxidant activity in both cell lines and animals. However, the molecular mechanism underlying this effect is not fully understood. Phase 2 enzymes play important roles in the antioxidant system by reducing electrophiles and reactive oxygen species (ROS). We demonstrated that EGb induced typical phase 2 genes: glutamate cysteine ligase catalytic subunit (GCLC) and glutathione-S-transferase subunit-P1 (GST-P1), by real-time PCR. To investigate the molecular mechanism of this induction, we used quinone oxidoreductase 1 (NQO1) -- Antioxidant response element (ARE) reporter assay and found that EGb activated the activity of the wild type but not the one with ARE mutated. It indicated that EGb induced these genes through ARE, a cis-acting motif located in the promoter region of nearly all phase 2 genes. Since nuclear factor erythroid 2-related factor 2 (Nrf2) binds ARE to enhance the expression of phase 2 genes, we detected the Nrf2 content in nucleus and found an accumulation of Nrf2 stimulated by EGb. In a further test of Kelch-like ECH-associated protein 1 (Keap1), the repression protein of Nrf2 in the cytosol under resting condition, we found that Keap1 content was inhibited by EGb and then more Nrf2 would be released to translocate into nucleus. Thus, EGb was testified for the first time to induce the phase 2 genes through the Keap1-Nrf2-ARE signaling pathway, which is (or part of) the antioxidant mechanism of EGb.


Subject(s)
Antioxidants/pharmacology , Gene Expression Regulation/drug effects , Ginkgo biloba/chemistry , Hepatocytes/drug effects , Oxidoreductases/biosynthesis , Plant Extracts/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Nucleus/metabolism , Dose-Response Relationship, Drug , Enzyme Induction , Hepatocytes/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidoreductases/genetics , RNA, Messenger/metabolism , Signal Transduction
16.
Hepatology ; 39(5): 1267-76, 2004 May.
Article in English | MEDLINE | ID: mdl-15122755

ABSTRACT

The transcription factor NF-E2-related factor 2 (Nrf2) plays an essential role in the mammalian response to chemical and oxidative stress through induction of hepatic phase II detoxification enzymes and regulation of glutathione (GSH). Enhanced liver damage in Nrf2-deficient mice treated with acetaminophen suggests a critical role for Nrf2; however, direct evidence for Nrf2 activation following acetaminophen exposure was previously lacking. We show that acetaminophen can initiate nuclear translocation of Nrf2 in vivo, with maximum levels reached after 1 hour, in a dose dependent manner, at doses below those causing overt liver damage. Furthermore, Nrf2 was shown to be functionally active, as assessed by the induction of epoxide hydrolase, heme oxygenase-1, and glutamate cysteine ligase gene expression. Increased nuclear Nrf2 was found to be associated with depletion of hepatic GSH. Activation of Nrf2 is considered to involve dissociation from a cytoplasmic inhibitor, Kelch-like ECH-associated protein 1 (Keap1), through a redox-sensitive mechanism involving either GSH depletion or direct chemical interaction through Michael addition. To investigate acetaminophen-induced Nrf2 activation we compared the actions of 2 other GSH depleters, diethyl maleate (DEM) and buthionine sulphoximine (BSO), only 1 of which (DEM) can function as a Michael acceptor. For each compound, greater than 60% depletion of GSH was achieved; however, in the case of BSO, this depletion did not cause nuclear translocation of Nrf2. In conclusion, GSH depletion alone is insufficient for Nrf2 activation: a more direct interaction is required, possibly involving chemical modification of Nrf2 or Keap1, which is facilitated by the prior loss of GSH.


Subject(s)
Acetaminophen/pharmacology , Analgesics, Non-Narcotic/pharmacology , DNA-Binding Proteins/metabolism , Liver/drug effects , Liver/metabolism , Trans-Activators/metabolism , Animals , Blotting, Northern , Cell Nucleus/metabolism , DNA-Binding Proteins/genetics , Gene Expression/drug effects , Glutathione/metabolism , Male , Maleates/pharmacology , Mice , Mice, Inbred Strains , NF-E2-Related Factor 2 , Trans-Activators/genetics
17.
Hepatology ; 39(5): 1267-1276, Apr 2004. grafilus
Article in English | MedCarib | ID: med-17556

ABSTRACT

The transcription factor NF-E2-related factor 2 (Nrf2) plays an essential role in the mammalian response to chemical and oxidative stress through induction of hepatic phase II detoxification enzymes and regulation of glutathione (GSH). Enhanced liver damage in Nrf2-deficient mice treated with acetaminophen suggests a critical role for Nrf2; however, direct evidence for Nrf2 activation following acetaminophen exposure was previously lacking. We show that acetaminophen can initiate nuclear translocation of Nrf2 in vivo, with maximum levels reached after 1 hour, in a dose dependent manner, at doses below those causing overt liver damage. Furthermore, Nrf2 was shown to be functionally active, as assessed by the induction of epoxide hydrolase, heme oxygenase-1, and glutamate cysteine ligase gene expression. Increased nuclear Nrf2 was found to be associated with depletion of hepatic GSH. Activation of Nrf2 is considered to involve dissociation from a cytoplasmic inhibitor, Kelch-like ECH-associated protein 1 (Keap1), through a redox-sensitive mechanism involving either GSH depletion or direct chemical interaction through Michael addition. To investigate acetaminophen-induced Nrf2 activation we compared the actions of 2 other GSH depleters, diethyl maleate (DEM) and buthionine sulphoximine (BSO), only 1 of which (DEM) can function as a Michael acceptor. For each compound, greater than 60% depletion of GSH was achieved; however, in the case of BSO, this depletion did not cause nuclear translocation of Nrf2. In conclusion, GSH depletion alone is insufficient for Nrf2 activation: a more direct interaction is required, possibly involving chemical modification of Nrf2 or Keap1, which is facilitated by the prior loss of GSH.


Subject(s)
Mice , Acetaminophen , Acetaminophen/pharmacology , NF-E2-Related Factor 2/pharmacology , Mice/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...