Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Toxics ; 10(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36287849

ABSTRACT

To estimate potential chemical risk, tools are needed to prioritize potential exposures for chemicals with minimal data. Consumer product exposures are a key pathway, and variability in consumer use patterns is an important factor. We designed Ex Priori, a flexible dashboard-type screening-level exposure model, to rapidly visualize exposure rankings from consumer product use. Ex Priori is Excel-based. Currently, it is parameterized for seven routes of exposure for 1108 chemicals present in 228 consumer product types. It includes toxicokinetics considerations to estimate body burden. It includes a simple framework for rapid modeling of broad changes in consumer use patterns by product category. Ex Priori rapidly models changes in consumer user patterns during the COVID-19 pandemic and instantly shows resulting changes in chemical exposure rankings by body burden. Sensitivity analysis indicates that the model is sensitive to the air emissions rate of chemicals from products. Ex Priori's simple dashboard facilitates dynamic exploration of the effects of varying consumer product use patterns on prioritization of chemicals based on potential exposures. Ex Priori can be a useful modeling and visualization tool to both novice and experienced exposure modelers and complement more computationally intensive population-based exposure models.

2.
Cell Metab ; 34(4): 564-580.e8, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385705

ABSTRACT

Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.


Subject(s)
Metabolic Syndrome , RNA Stability , Animals , Eating , Energy Metabolism/genetics , Fibroblast Growth Factors/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Humans , Liver/metabolism , Metabolic Syndrome/metabolism , Mice , RNA Stability/genetics , RNA Stability/physiology , Ribonucleases/metabolism
3.
Expert Opin Drug Metab Toxicol ; 17(8): 903-921, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34056988

ABSTRACT

INTRODUCTION: Toxicity data are unavailable for many thousands of chemicals in commerce and the environment. Therefore, risk assessors need to rapidly screen these chemicals for potential risk to public health. High-throughput screening (HTS) for in vitro bioactivity, when used with high-throughput toxicokinetic (HTTK) data and models, allows characterization of these thousands of chemicals. AREAS COVERED: This review covers generic physiologically based toxicokinetic (PBTK) models and high-throughput PBTK modeling for in vitro-in vivo extrapolation (IVIVE) of HTS data. We focus on 'httk', a public, open-source set of computational modeling tools and in vitro toxicokinetic (TK) data. EXPERT OPINION: HTTK benefits chemical risk assessors with its ability to support rapid chemical screening/prioritization, perform IVIVE, and provide provisional TK modeling for large numbers of chemicals using only limited chemical-specific data. Although generic TK model design can increase prediction uncertainty, these models provide offsetting benefits by increasing model implementation accuracy. Also, public distribution of the models and data enhances reproducibility. For the httk package, the modular and open-source design can enable the tool to be used and continuously improved by a broad user community in support of the critical need for high-throughput chemical prioritization and rapid dose estimation to facilitate rapid hazard assessments.


Subject(s)
High-Throughput Screening Assays/methods , Models, Biological , Toxicokinetics , Animals , Computer Simulation , Humans , Reproducibility of Results , Risk Assessment/methods
4.
PLoS Comput Biol ; 12(2): e1004495, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26871706

ABSTRACT

Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals.


Subject(s)
Models, Biological , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Animals , Computational Biology , Humans , Knowledge Bases , Mice , Rats , Swine
5.
Environ Health Perspect ; 124(6): 697-702, 2016 06.
Article in English | MEDLINE | ID: mdl-26545029

ABSTRACT

BACKGROUND: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving. OBJECTIVES: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products. DISCUSSION: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential. CONCLUSIONS: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. CITATION: Egeghy PP, Sheldon LS, Isaacs KK, Özkaynak H, Goldsmith M-R, Wambaugh JF, Judson RS, Buckley TJ. 2016. Computational exposure science: an emerging discipline to support 21st-century risk assessment. Environ Health Perspect 124:697-702; http://dx.doi.org/10.1289/ehp.1509748.


Subject(s)
Computer Simulation , Environmental Exposure/statistics & numerical data , Computational Biology , Environmental Pollutants , Environmental Pollution/statistics & numerical data , Humans , Risk Assessment/methods , United States , United States Environmental Protection Agency
6.
Environ Health Perspect ; 124(1): 53-60, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25978103

ABSTRACT

BACKGROUND: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. OBJECTIVES: We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. METHODS: Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood-brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. RESULTS: Application of the workflow screened 10 "low-priority" chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. CONCLUSIONS: The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 "low-priority" chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible "false negatives." CITATION: Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ Health Perspect 124:53-60; http://dx.doi.org/10.1289/ehp.1409450.


Subject(s)
Cholinesterase Inhibitors/pharmacokinetics , High-Throughput Screening Assays/methods , Workflow , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/analysis , Humans , In Vitro Techniques , Risk Assessment
7.
Toxicol Rep ; 3: 723-732, 2016.
Article in English | MEDLINE | ID: mdl-28959598

ABSTRACT

Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents). We combined these functions with weight fraction data for 4115 personal care products (PCPs) to characterize the composition of 66 different product categories (e.g., shampoos). We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR) classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties). We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-based chemical prioritization.

8.
Toxicol Rep ; 2: 228-237, 2015.
Article in English | MEDLINE | ID: mdl-28962356

ABSTRACT

Humans are exposed to thousands of chemicals in the workplace, home, and via air, water, food, and soil. A major challenge in estimating chemical exposures is to understand which chemicals are present in these media and microenvironments. Here we describe the Chemical/Product Categories Database (CPCat), a new, publically available (http://actor.epa.gov/cpcat) database of information on chemicals mapped to "use categories" describing the usage or function of the chemical. CPCat was created by combining multiple and diverse sources of data on consumer- and industrial-process based chemical uses from regulatory agencies, manufacturers, and retailers in various countries. The database uses a controlled vocabulary of 833 terms and a novel nomenclature to capture and streamline descriptors of chemical use for 43,596 chemicals from the various sources. Examples of potential applications of CPCat are provided, including identifying chemicals to which children may be exposed and to support prioritization of chemicals for toxicity screening. CPCat is expected to be a valuable resource for regulators, risk assessors, and exposure scientists to identify potential sources of human exposures and exposure pathways, particularly for use in high-throughput chemical exposure assessment.

9.
Environ Sci Technol ; 48(21): 12750-9, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25222184

ABSTRACT

United States Environmental Protection Agency (USEPA) researchers are developing a strategy for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary modules of SHEDS-MM have been operationally modified to reduce the user burden, input data demands, and run times of the higher-tier model, while maintaining critical features and inputs that influence exposure. The model has been implemented in R; the modeling framework links chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals associated with consumer products and agricultural pesticides. These evaluations employ data from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), chemical composition, and exposure scenarios for a wide range of consumer products. In modeling indirect exposures from near-field sources, SHEDS-HT employs a fugacity-based module to estimate concentrations in indoor environmental media. The concentration estimates, along with relevant exposure factors and human activity data, are then used by the model to rapidly generate probabilistic population distributions of near-field indirect exposures via dermal, nondietary ingestion, and inhalation pathways. Pathway-specific estimates of near-field direct exposures from consumer products are also modeled. Population dietary exposures for a variety of chemicals found in foods are combined with the corresponding chemical-specific near-field exposure predictions to produce aggregate population exposure estimates. The estimated intake dose rates (mg/kg/day) for the 2507 chemical case-study spanned 13 orders of magnitude. SHEDS-HT successfully reproduced the pathway-specific exposure results of the higher-tier SHEDS-MM for a case-study pesticide and produced median intake doses significantly correlated (p<0.0001, R2=0.39) with medians inferred using biomonitoring data for 39 chemicals from the National Health and Nutrition Examination Survey (NHANES). Based on the favorable performance of SHEDS-HT with respect to these initial evaluations, we believe this new tool will be useful for HT prediction of chemical exposure potential.


Subject(s)
Computer Simulation , Diet , Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Models, Statistical , Multimedia , Biomarkers/analysis , Humans , Nutrition Surveys , Organic Chemicals/analysis , Pesticides/analysis , Stochastic Processes
10.
Bioinformation ; 9(13): 707-9, 2013.
Article in English | MEDLINE | ID: mdl-23930024

ABSTRACT

UNLABELLED: As increasing amounts of biomonitoring survey data become available, a new discipline focused on converting such data into estimates of chemical exposures has developed. Reverse dosimetry uses a pharmacokinetic model along with measured biomarker concentrations to determine the plausible exposure concentrations-- a critical step to incorporate ground-truthing experimental data into a distribution of probable exposures that reduces model uncertainty and variability. At the population level, probabilistic reverse dosimetry can utilize a distribution of measured biomarker concentrations to identify the most likely exposure concentrations (or intake doses) experienced by the study participants. PROcEED is software that provides access to probabilistic reverse dosimetry approaches for estimating exposure distributions via a simple user interface. AVAILABILITY: PROcEED along with installation instructions is freely available for download from http://www.epa.gov/heasd/products/proceed/proceed.html.

11.
Toxicol Sci ; 130(1): 33-47, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22859315

ABSTRACT

Permethrin is a broad-spectrum pyrethroid insecticide and among the most widely used insecticides in homes and crops. Managing the risks for pesticides such as permethrin depends on the ability to consider diverse exposure scenarios and their relative risks. Physiologically based pharmacokinetic models of delta methrin disposition were modified to describe permethrin kinetics in the rat and human. Unlike formulated deltamethrin which consists of a single stereoisomer, permethrin is formulated as a blend of cis- and trans-diastereomers. We assessed time courses for cis-permethrin and trans-permethrin in several tissues (brain, blood, liver, and fat) in the rat following oral administration of 1 and 10mg/kg permethrin (cis/trans: 40/60). Accurate simulation of permethrin in the rat suggests that a generic model structure is promising for modeling pyrethroids. Human in vitro data and appropriate anatomical information were used to develop a provisional model of permethrin disposition with structures for managing oral, dermal, and inhalation routes of exposure. The human permethrin model was used to evaluate dietary and residential exposures in the U.S. population as estimated by EPA's Stochastic Human Exposure and Dose Simulation model. Simulated cis- and trans-DCCA, metabolites of permethrin, were consistent with measured values in the National Health and Nutrition Examination Survey, indicating that the model holds promise for assessing population exposures and quantifying dose metrics.


Subject(s)
Environmental Exposure , Food Contamination , Insecticides/pharmacokinetics , Models, Biological , Permethrin/pharmacokinetics , Animals , Diet , Drug Administration Routes , Food Contamination/analysis , Humans , Insecticides/administration & dosage , Isomerism , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Permethrin/administration & dosage , Rats , Rats, Long-Evans , Regional Blood Flow , Risk Assessment , Tissue Distribution
12.
J Biomed Biotechnol ; 2012: 308381, 2012.
Article in English | MEDLINE | ID: mdl-22619493

ABSTRACT

Bionanomedicine and environmental research share need common terms and ontologies. This study applied knowledge systems, data mining, and bibliometrics used in nano-scale ADME research from 1991 to 2011. The prominence of nano-ADME in environmental research began to exceed the publication rate in medical research in 2006. That trend appears to continue as a result of the growing products in commerce using nanotechnology, that is, 5-fold growth in number of countries with nanomaterials research centers. Funding for this research virtually did not exist prior to 2002, whereas today both medical and environmental research is funded globally. Key nanoparticle research began with pharmacology and therapeutic drug-delivery and contrasting agents, but the advances have found utility in the environmental research community. As evidence ultrafine aerosols and aquatic colloids research increased 6-fold, indicating a new emphasis on environmental nanotoxicology. User-directed expert elicitation from the engineering and chemical/ADME domains can be combined with appropriate Boolean logic and queries to define the corpus of nanoparticle interest. The study combined pharmacological expertise and informatics to identify the corpus by building logical conclusions and observations. Publication records informatics can lead to an enhanced understanding the connectivity between fields, as well as overcoming the differences in ontology between the fields.


Subject(s)
Databases, Factual , Nanostructures/toxicity , Nanostructures/therapeutic use , Terminology as Topic , Toxicity Tests , Abstracting and Indexing , Computational Biology , Nanotechnology , Publications
13.
J Toxicol Environ Health B Crit Rev ; 13(2-4): 299-313, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20574904

ABSTRACT

A new generation of scientific tools has emerged to rapidly measure signals from cells, tissues, and organisms following exposure to chemicals. High-visibility efforts to apply these tools for efficient toxicity testing raise important research questions in exposure science. As vast quantities of data from high-throughput screening (HTS) in vitro toxicity assays become available, this new toxicity information must be translated to assess potential risks to human health from environmental exposures. Exposure information is required to link information on potential toxicity of environmental contaminants to real-world health outcomes. In the immediate term, tools are required to characterize and classify thousands of environmental chemicals in a rapid and efficient manner to prioritize testing and assess potential for risk to human health. Rapid risk assessment requires prioritization based on both hazard and exposure dimensions of the problem. To address these immediate needs within the context of longer term objectives for chemical evaluation and risk management, a translation framework is presented for incorporating toxicity and exposure information to inform public health decisions at both the individual and population levels. Examples of required exposure science contributions are presented with a focus on early advances in tools for modeling important links across the source-to-outcome paradigm. ExpoCast, a new U.S. Environmental Protection Agency (EPA) program aimed at developing novel approaches and metrics to screen and evaluate chemicals based on the potential for biologically relevant human exposures is introduced. The goal of ExpoCast is to advance characterization of exposure required to translate findings in computational toxicology to information that can be directly used to support exposure and risk assessment for decision making and improved public health.


Subject(s)
Environmental Exposure/analysis , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Toxicology/methods , Animals , Computational Biology/methods , Decision Making , Environmental Pollutants/chemistry , Hazardous Substances/adverse effects , Hazardous Substances/analysis , High-Throughput Screening Assays , Humans , Risk Assessment , Risk Management/methods , Toxicity Tests/methods , United States , United States Environmental Protection Agency
14.
J Pharmacokinet Pharmacodyn ; 37(3): 277-87, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20495853

ABSTRACT

We describe the development and implementation of a Physiological and Anatomical Visual Analytics tool (PAVA), a web browser-based application, used to visualize experimental/simulated chemical time-course data (dosimetry), epidemiological data and Physiologically-Annotated Data (PAD). Using continuous color mapping scheme both spatial (organ shape and location) and temporal (time-course/kinetics) data was cast onto an abstract, layered, 2D visual representation of the human anatomy and physiology. This approach is aligned with the compartment-level of detail afforded by Physiologically-Based Pharmacokinetic (PBPK) modeling of chemical disposition. In this tutorial we provide several illustrative examples of how PAVA may be applied: (1) visualization of multiple organ/tissue simulated dosimetry of a previously published oral exposure route ethanol PBPK model, (2) visualization of PAD such as organ-specific disease time-lines or (3) tissue-specific mRNA expression-level profiles (e.g. phase I/II metabolic enzymes and nuclear receptors) to draw much needed molecular biological conclusions at organ-level resolution conducive to model development. Furthermore, discussion is raised on how graphical representations of PBPK models, and the use of PAVA more generally to visualize PAD, can be of benefit. We believe this novel platform-independent tool for visualizing PAD on physiologically-relevant representations of human anatomy will become a valuable visual analytic addition to the tool-kits of modern exposure scientists, computational biologists, toxicologists, biochemists, molecular biologists, epidemiologists and pathologists alike in visually translating, representing and mining complex PAD relationships required to understand systems biology or manage chemical risk.


Subject(s)
Computer Graphics , Pharmacokinetics , Pharmacology/methods , Humans , Models, Biological , Software , Tissue Distribution
15.
Chem Res Toxicol ; 22(9): 1594-602, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19715353

ABSTRACT

There is a paucity of relevant experimental information available for the evaluation of the potential health and environmental effects of many man made chemicals. Knowledge of the potential pathways for activity provides a rational basis for the extrapolations inherent in the preliminary evaluation of risk and the establishment of priorities for obtaining missing data for environmental chemicals. The differential step in many mechanisms of toxicity may be generalized as the interaction between a small molecule (a potential toxicant) and one or more macromolecular targets. An approach based on computation of the interaction between a potential molecular toxicant and a library of macromolecular targets of toxicity has been proposed for preliminary chemical screening. In the current study, the interaction between a series of environmentally relevant chemicals and models of the rat estrogen receptors (ER) was computed and the results compared to an experimental data set of their relative binding affinities. The experimental data set consists of 281 chemicals, selected from the U.S. EPA's Toxic Substances Control Act (TSCA) inventory, that were initially screened using the rat uterine cytosolic ER-competitive binding assay. Secondary analysis, using Lineweaver-Burk plots and slope replots, was applied to confirm that only 15 of these test chemicals were true competitive inhibitors of ER binding with experimental inhibition constants (K(i)) less than 100 microM. Two different rapid computational docking methods have been applied. Each provides a score that is a surrogate for the strength of the interaction between each ligand-receptor pair. Using the score that indicates the strongest interaction for each pair, without consideration of the geometry of binding between the toxicant and the target, all of the active molecules were discovered in the first 16% of the chemicals. When a filter is applied on the basis of the geometry of a simplified pharmacophore for binding to the ER, the results are improved, and all of the active molecules were discovered in the first 8% of the chemicals. In order to obtain no false negatives in the model that includes the pharmacophore filter, only 8 molecules are false positives. These results indicate that molecular docking algorithms that were designed to find the chemicals that act most strongly at a receptor (and therefore are potential pharmaceuticals) can efficiently separate weakly active chemicals from a library of primarily inactive chemicals. The advantage of using a pharmacophore filter suggests that the development of filters of this type for other receptors will prove valuable.


Subject(s)
Environmental Pollutants/chemistry , Receptors, Estrogen/metabolism , Algorithms , Animals , Binding, Competitive , Computer Simulation , Databases, Factual , Environmental Pollutants/pharmacology , Female , Models, Chemical , Rats , Structure-Activity Relationship
16.
Drug Metab Dispos ; 37(9): 1801-5, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19541826

ABSTRACT

Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast to oxidative P450 transformations, which occur on the periphery of a microsome vesicle, intraluminal carbonyl reduction depends on transport of cofactors across the endoplasmic reticulum (ER) membrane into the lumen. Glucose 6-phosphate, a natural cofactor and component of the NRS matrix, is readily transported across the ER membrane and facilitates intraluminal NADPH production, whereas direct addition of NADPH has limited access to the lumen. In this study, we compared the effects of direct addition of NADPH and use of an NRS on the P450-mediated transformation of propiconazole and 11 beta-hydroxysteroid dehydrogenase type 1 (HSD1) carbonyl reduction of cortisone and the xenobiotic triadimefon in hepatic microsomes. Our results demonstrate that the use of NADPH rather than NRS can underestimate the kinetic rates of intraluminal carbonyl reduction, whereas P450-mediated transformations were unaffected. Therefore, in vitro depletion rates measured for a carbonyl-containing xenobiotic susceptible to both intraluminal carbonyl reduction and P450 processes may not be properly assessed with direct addition of NADPH. In addition, we used in silico predictions as follows: 1) to show that 11 beta-HSD1 carbonyl reduction was energetically more favorable than oxidative P450 transformation; and 2) to calculate chemical binding score and the distance between the carbonyl group and the hydride to be transferred by NADPH to identify other 11 beta-HSD1 substrates for which reaction kinetics may be underestimated by direct addition of NADPH.


Subject(s)
Microsomes, Liver/metabolism , NADP/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Animals , Chromatography, High Pressure Liquid , Cortisone/metabolism , In Vitro Techniques , Indicators and Reagents , Kinetics , Male , NADP/biosynthesis , Rats , Rats, Sprague-Dawley , Triazoles/metabolism , Xenobiotics/metabolism
17.
Environ Health Perspect ; 116(5): 573-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18470285

ABSTRACT

BACKGROUND: The human health risk from exposure to environmental chemicals often must be evaluated when relevant elements of the preferred data are unavailable. Therefore, strategies are needed that can predict this information and prioritize the outstanding data requirements for the risk evaluation. Many modes of molecular toxicity require the chemical or one of its biotransformation products to interact with specific biologic macromolecules (i.e., proteins and DNA). Molecular modeling approaches may be adapted to study the interactions of environmental chemicals with biomolecular targets. OBJECTIVE: In this commentary we provide an overview of the challenges that arise from applying molecular modeling tools developed and commonly used for pharmaceutical discovery to the problem of predicting the potential toxicities of environmental chemicals. DISCUSSION: The use of molecular modeling tools to predict the unintended health and environmental consequences of environmental chemicals differs strategically from the use of the same tools in the pharmaceutical discovery process in terms of the goals and potential applications. It also requires consideration of the greater diversity of chemical space and binding affinity domains than is covered by pharmaceuticals. CONCLUSION: Molecular modeling methods offer one of several complementary approaches to evaluate the risk to human health and the environment as a result of exposure to environmental chemicals. These tools can streamline the hazard assessment process by simulating possible modes of action and providing virtual screening tools that can help prioritize bioassay requirements. Tailoring these strategies to the particular challenges presented by environmental chemical interactions make them even more effective.


Subject(s)
Biological Assay , Hazardous Substances/toxicity , Models, Molecular , Computer Simulation , Hazardous Substances/adverse effects , Hazardous Substances/analysis , Risk Assessment/methods , Structure-Activity Relationship
19.
Phys Chem Chem Phys ; 8(1): 63-7, 2006 Jan 07.
Article in English | MEDLINE | ID: mdl-16482245

ABSTRACT

Using a dissymmetrically-perturbed particle-in-a-box model, we demonstrate that the induced optical activity of chiral monolayer protected clusters, such as Whetten's Au28(SG)16 glutathione-passivated gold nanoclusters (J. Phys. Chem. B, 2000, 104, 2630-2641), could arise from symmetric metal cores perturbed by a dissymmetric or chiral field originating from the adsorbates. This finding implies that the electronic states of the nanocluster core are chiral, yet the lattice geometries of these cores need not be geometrically distorted by the chiral adsorbates. Based on simple chiral monolayer protected cluster models, we rationalize how the adsorption pattern of the tethering sulfur atoms has a substantial effect on the induced CD in the NIR spectral region, and we show how the chiral image charge produced in the core provides a convenient means of visualizing dissymmetric perturbations to the achiral gold nanocluster core.


Subject(s)
Computer Simulation , Gold/chemistry , Models, Chemical , Adsorption , Models, Molecular , Stereoisomerism , Sulfides
20.
Org Lett ; 7(23): 5269-72, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16268555

ABSTRACT

[reaction: see text] The combination of NMR NOE, chemical shift, and J-coupling measurements with molar rotation and circular dichroism (CD) determinations, including RI-DFT BP86/aug-cc-pVDZ calculations, reduced a candidate pool of 1024 possible stereoisomers of (+)-bistramide C to a single absolute configuration assignment for the 10 stereogenic carbons of the marine natural product.


Subject(s)
Biological Products/analysis , Biological Products/chemistry , Ethers, Cyclic/analysis , Ethers, Cyclic/chemistry , Circular Dichroism , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...