Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Digit Health ; 9: 20552076231218885, 2023.
Article in English | MEDLINE | ID: mdl-38053733

ABSTRACT

Background: Recent technological developments enable big data-driven insights on diurnal changes. This study aimed to describe the trajectory of multiple and advanced parameters using a medical-grade wearable remote patient monitor. Methods: Parameters were monitored for 24 h in 256 ambulatory participants who kept living their normal life. Parameters included heart rate, blood pressure, stroke volume, cardiac index, systemic vascular resistance, blood oxygen saturation, and respiratory rate. Diurnal variations were evaluated, and analyses were stratified based on sex, age, and body mass index. Results: All parameters showed diurnal changes (p < 0.001). Females demonstrated higher heart rate and cardiac index with lower systemic vascular resistance. Obese participants had a higher blood pressure, and lower stroke volume and cardiac index. Systemic vascular resistance was higher among the elderly. Diurnal changes corresponded with awake-sleep hours and differed between sex, age, and body mass index groups. Conclusion: Wearable monitoring platforms could decipher hemodynamic changes in subgroups of individuals, and might help with efforts to provide personalized medicine, pre-symptomatic diagnosis and prevention, and drug development.

2.
Front Physiol ; 14: 1279314, 2023.
Article in English | MEDLINE | ID: mdl-38033330

ABSTRACT

Introduction: Body temperature is essential for diagnosing, managing, and following multiple medical conditions. There are several methods and devices to measure body temperature, but most do not allow continuous and prolonged measurement of body temperature. Noninvasive skin temperature sensor combined with a heat flux sensor, also known as the "double sensor" technique, is becoming a valuable and simple method for frequently monitoring body temperature. Methods: Body temperature measurements using the "double sensor" method in a wearable monitoring device were compared with oral and core body temperature measurements using medical grade thermometers, analyzing data from two prospective clinical trials of different clinical scenarios. One study included 45 hospitalized COVID-19 patients in which oral measurements were taken using a hand-held device, and the second included 18 post-cardiac surgery patients in which rectal measurements were taken using a rectal probe. Results: In study 1, Bland-Altman analysis showed a bias of -0.04°C [0.34-(-0.43)°C, 95% LOA] with a correlation of 99.4% (p < 0.001). In study 2, Bland-Altman analysis showed a bias of 0.0°C [0.27-(-0.28)°C, 95% LOA], and the correlation was 99.3% (p < 0.001). In both studies, stratifying patients based on BMI and skin tone showed high accordance in all sub-groups. Discussion: The wearable monitor showed high correlation with oral and core body temperature measurements in different clinical scenarios.

3.
Chron Respir Dis ; 20: 14799731231198865, 2023.
Article in English | MEDLINE | ID: mdl-37612250

ABSTRACT

BACKGROUND: Respiratory rate (RR) is used for the diagnosis and management of medical conditions and can predict clinical changes. Heavy workload, understaffing, and errors related to poor recording make it underutilized. Wearable devices may facilitate its use. METHODS: RR measurements using a wearable photoplethysmography-based monitor were compared with medical grade devices in complementary clinical scenarios: Study one included a comparison to a capnograph in 35 healthy volunteers; Study two included a comparison to a ventilator monitor in 18 ventilated patients; and Study three included a comparison to capnograph in 92 COVID-19 patients with active pulmonary disease. Pearson's correlations and Bland-Altman analysis were used to assess the accuracy and agreement between the measurement techniques, including stratification for Body Mass Index (BMI) and skin tone. Statistical significance was set at p ≤ 0.05. RESULTS: High correlation was found in all studies (r = 0.991, 0.884, and 0.888, respectively, p < 0.001 for all). 95% LOA of ±2.3, 1.7-(-1.6), and ±3.9 with a bias of < 0.1 breaths per minute was found in Bland-Altman analysis in studies 1,2, and 3, respectively. In all, high accordance was found in all sub-groups. CONCLUSIONS: RR measurements using the wearable monitor were highly-correlated with medical-grade devices in various clinical settings. TRIAL REGISTRATION: ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT03603860.


Subject(s)
Respiratory Rate , Wearable Electronic Devices , Humans , Body Mass Index , Monitoring, Physiologic/methods
4.
Front Physiol ; 14: 1138647, 2023.
Article in English | MEDLINE | ID: mdl-37064911

ABSTRACT

Background: Currently-used tools for early recognition of clinical deterioration have high sensitivity, but with low specificity and are based on infrequent measurements. We aimed to develop a pre-symptomatic and real-time detection and warning tool for potential patients' deterioration based on multi-parameter real-time warning score (MPRT-WS). Methods: A total of more than 2 million measurements were collected, pooled, and analyzed from 521 participants, of which 361 were patients in general wards defined at high-risk for deterioration and 160 were healthy participants allocation as controls. The risk score stratification was based on cutoffs of multiple physiological parameters predefined by a panel of specialists, and included heart rate, blood oxygen saturation (SpO2), respiratory rate, cuffless systolic and diastolic blood pressure (SBP and DBP), body temperature, stroke volume (SV), cardiac output, and systemic vascular resistance (SVR), recorded every 5 min for a period of up to 72 h. The data was used to define the various risk levels of a real-time detection and warning tool, comparing it with the clinically-used National Early Warning Score (NEWS). Results: When comparing risk levels among patients using both tools, 92.6%, 6.1%, and 1.3% of the readings were defined as "Low", "Medium", and "High" risk with NEWS, and 92.9%, 6.4%, and 0.7%, respectively, with MPRT-WS (p = 0.863 between tools). Among the 39 patients that deteriorated, 30 patients received 'High' or 'Urgent' using the MPRT-WS (42.7 ± 49.1 h before they deteriorated), and only 6 received 'High' score using the NEWS. The main abnormal vitals for the MPRT-WS were SpO2, SBP, and SV for the "Urgent" risk level, DBP, SVR, and SBP for the "High" risk level, and DBP, SpO2, and SVR for the "Medium" risk level. Conclusion: As the new detection and warning tool is based on highly-frequent monitoring capabilities, it provides medical teams with timely alerts of pre-symptomatic and real-time deterioration.

5.
Mo Med ; 120(2): 102-105, 2023.
Article in English | MEDLINE | ID: mdl-37091941
6.
Cancer Res ; 82(22): 4164-4178, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36084256

ABSTRACT

Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression. Proteomic analysis of routinely active human subject plasma demonstrated increased carbohydrate utilization following exercise. Epidemiologic data from a 20-year prospective study of a large human cohort of initially cancer-free participants revealed that exercise prior to cancer initiation had a modest impact on cancer incidence in low metastatic stages but significantly reduced the likelihood of highly metastatic cancer. In three models of melanoma in mice, exercise prior to cancer injection significantly protected against metastases in distant organs. The protective effects of exercise were dependent on mTOR activity, and inhibition of the mTOR pathway with rapamycin treatment ex vivo reversed the exercise-induced metabolic shield. Under limited glucose conditions, active stroma consumed significantly more glucose at the expense of the tumor. Collectively, these data suggest a clash between the metabolic plasticity of cancer and exercise-induced metabolic reprogramming of the stroma, raising an opportunity to block metastasis by challenging the metabolic needs of the tumor. SIGNIFICANCE: Exercise protects against cancer progression and metastasis by inducing a high nutrient demand in internal organs, indicating that reducing nutrient availability to tumor cells represents a potential strategy to prevent metastasis. See related commentary by Zerhouni and Piskounova, p. 4124.


Subject(s)
Exercise , Melanoma , Nutrients , Proteomics , Animals , Humans , Mice , Glucose/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Prospective Studies , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Exercise/physiology , Nutrients/genetics , Nutrients/metabolism
7.
Front Physiol ; 13: 916924, 2022.
Article in English | MEDLINE | ID: mdl-35774290

ABSTRACT

Purpose: Compare recovery rates between active young (Y) and middle-aged (MA) males up to 48H post aerobically based, exercise-induced muscle damage (EIMD) protocol. A secondary aim was to explore the relationships between changes in indices associated with EIMD and recovery throughout this timeframe. Methods: Twenty-eight Y (n = 14, 26.1 ± 2.9y, 74.5 ± 9.3 kg) and MA (n = 14, 43.6 ± 4.1y, 77.3 ± 12.9 kg) physically active males, completed a 60-min downhill running (DHR) on a treadmill at -10% incline and at 65% of maximal heart rate (HR). Biochemical, biomechanical, psychological, force production and muscle integrity (using MRI diffusion tensor imaging) markers were measured at baseline, immediately-post, and up to 48H post DHR. Results: During the DHR, HR was lower (p < 0.05) in MA compared to Y, but running pace and distance covered were comparable between groups. No statistical or meaningful differences were observed between groups for any of the outcomes. Yet, Significant (p < 0.05) time-effects within each group were observed: markers of muscle damage, cadence and perception of pain increased, while TNF-a, isometric and dynamic force production and stride-length decreased. Creatine-kinase at 24H-post and 48H-post were correlated (p < 0.05, r range = -0.57 to 0.55) with pain perception, stride-length, and cadence at 24H-post and 48H-post. Significant (p < 0.05) correlations were observed between isometric force production at all time-points and IL-6 at 48H-post DHR (r range = -0.62 to (-0.74). Conclusion: Y and MA active male amateur athletes recover in a comparable manner following an EIMD downhill protocol. These results indicate that similar recovery strategies can be used by trainees from both age groups following an aerobic-based EIMD protocol.

8.
Nat Metab ; 4(7): 883-900, 2022 07.
Article in English | MEDLINE | ID: mdl-35817855

ABSTRACT

Sexual dimorphisms are responsible for profound metabolic differences in health and behavior. Whether males and females react differently to environmental cues, such as solar ultraviolet (UV) exposure, is unknown. Here we show that solar exposure induces food-seeking behavior, food intake, and food-seeking behavior and food intake in men, but not in women, through epidemiological evidence of approximately 3,000 individuals throughout the year. In mice, UVB exposure leads to increased food-seeking behavior, food intake and weight gain, with a sexual dimorphism towards males. In both mice and human males, increased appetite is correlated with elevated levels of circulating ghrelin. Specifically, UVB irradiation leads to p53 transcriptional activation of ghrelin in skin adipocytes, while a conditional p53-knockout in mice abolishes UVB-induced ghrelin expression and food-seeking behavior. In females, estrogen interferes with the p53-chromatin interaction on the ghrelin promoter, thus blocking ghrelin and food-seeking behavior in response to UVB exposure. These results identify the skin as a major mediator of energy homeostasis and may lead to therapeutic opportunities for sex-based treatments of endocrine-related diseases.


Subject(s)
Ghrelin , Tumor Suppressor Protein p53 , Animals , Appetite , Female , Ghrelin/pharmacology , Humans , Male , Mice , Tumor Suppressor Protein p53/genetics , Ultraviolet Rays , Weight Gain
9.
Front Physiol ; 13: 911544, 2022.
Article in English | MEDLINE | ID: mdl-35846008

ABSTRACT

Vital signs obtained by photoplethysmography-based devices might be influenced by subcutaneous fat and skin color. This observational comparison study aimed to test the accuracy of blood pressure (BP) measurements between a photoplethysmography-based device and cuff-based BP device in ambulatory individuals, coming for a routine BP checkup. Systolic BP (SBP) and diastolic BP (DBP) measurements were stratified based on sex, BMI (<25; 25 ≤BMI<30; 30 ≤kg/m2), and skin color (types 1-3 and 4-6 by the Fitzpatrick scale). A total of 1548 measurements were analyzed. Correlations of SBP and DBP between the devices among males/females were between 0.914-0.987 (p < 0.001), and Bland-Altman analysis showed a bias of less than 0.5 mmHg for both sexes. Correlations of SBP and DBP between the devices among BMI groups were between 0.931-0.991 (p < 0.001), and Bland-Altman analysis showed a bias of less than 1 mmHg for all. Correlations of SBP and DBP between the devices among the skin color groups were between 0.936-0.983 (p < 0.001), and Bland-Altman analysis showed a bias of less than 1 mmHg for all. This study shows similar and high agreements between BP measurements obtained using a PPG-based non-invasive cuffless BP device and a cuff-based BP device across sex, BMI, and skin color groups.

10.
Commun Med (Lond) ; 2: 27, 2022.
Article in English | MEDLINE | ID: mdl-35603274

ABSTRACT

Background: Clinical trial guidelines for assessing the safety of vaccines, are primarily based on self-reported questionnaires. Despite the tremendous technological advances in recent years, objective, continuous assessment of physiological measures post-vaccination is rarely performed. Methods: We conducted a prospective observational study during the mass vaccination campaign in Israel. 160 participants >18 years who were not previously found to be COVID-19 positive and who received the BNT162b2 COVID-19 (Pfizer BioNTech) vaccine were equipped with an FDA-approved chest-patch sensor and a dedicated mobile application. The chest-patch sensor continuously monitored 13 different cardiovascular, and hemodynamic vitals: heart rate, blood oxygen saturation, respiratory rate, systolic and diastolic blood pressure, pulse pressure, mean arterial pressure, heart rate variability, stroke volume, cardiac output, cardiac index, systemic vascular resistance and skin temperature. The mobile application collected daily self-reported questionnaires on local and systemic reactions. Results: We identify continuous and significant changes following vaccine administration in nearly all vitals. Markedly, these changes are observed even in presumably asymptomatic participants who did not report any local or systemic reaction. Changes in vitals are more apparent at night, in younger participants, and in participants following the second vaccine dose. Conclusion: the considerably higher sensitivity of wearable sensors can revolutionize clinical trials by enabling earlier identification of abnormal reactions with fewer subjects.

11.
Respir Med ; 197: 106832, 2022 06.
Article in English | MEDLINE | ID: mdl-35462298

ABSTRACT

RATIONALE: SARS-CoV-2 continues to cause a global pandemic and management of COVID-19 in outpatient settings remains challenging. OBJECTIVE: We sought to describe characteristics of patients with chronic respiratory disease (CRD) experiencing symptoms consistent with COVID-19, who were seen in a novel Acute Respiratory Clinic, prior to widely available testing, emergence of variants, COVID-19 vaccination, and post-vaccination (breakthrough) SARS-CoV-2 infections. METHODS: Retrospective electronic medical record data were analyzed from 907 adults with presumed COVID-19 seen between March 16, 2020 and January 7, 2021. Data included demographics, comorbidities, medications, vital signs, laboratory tests, pulmonary function tests, patient disposition, and co-infections. The overdispersed data (aod) R package was used to create a logit model using COVID-19 diagnosis by PCR as the dichotomous outcome variable. Univariate, conventional multivariate and elastic net machine learning were used to analyze data. RESULTS: Male gender, elevated baseline temperature, and respiratory rate predicted COVID-19 diagnosis. Eosinopenia, neutrophilia, and lymphocytosis were also associated with COVID-19 diagnosis. However, asthma and COPD diagnoses were not associated with SARS-CoV-2 PCR positive test. Male gender, low oxygen saturation, and lower forced expiratory volume in 1 s (FEV1) were associated with higher hospital referral. CONCLUSIONS: CRD patients with acute respiratory symptoms in the ambulatory setting were more likely to have COVID-19 if male, febrile and tachypneic. Patients with lower pre-morbid FEV1 and lower SPO2 are more likely to be referred to the hospital. A composite of vitals sigs and WBC differential help risk stratify CRD patients seeking care for presumed COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , COVID-19 Vaccines , Fever/diagnosis , Humans , Male , Referral and Consultation , Retrospective Studies
12.
Crit Care Explor ; 4(3): e0658, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35291316

ABSTRACT

The multifaceted long-term impairments resulting from critical illness and COVID-19 require interdisciplinary management approaches in the recovery phase of illness. Operational insights into the structure and process of recovery clinics (RCs) from heterogeneous health systems are needed. This study describes the structure and process characteristics of existing and newly implemented ICU-RCs and COVID-RCs in a subset of large health systems in the United States. DESIGN: Cross-sectional survey. SETTING: Thirty-nine RCs, representing a combined 156 hospitals within 29 health systems participated. PATIENTS: None. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: RC demographics, referral criteria, and operating characteristics were collected, including measures used to assess physical, psychologic, and cognitive recoveries. Thirty-nine RC surveys were completed (94% response rate). ICU-RC teams included physicians, pharmacists, social workers, physical therapists, and advanced practice providers. Funding sources for ICU-RCs included clinical billing (n = 20, 77%), volunteer staff support (n = 15, 58%), institutional staff/space support (n = 13, 46%), and grant or foundation funding (n = 3, 12%). Forty-six percent of RCs report patient visit durations of 1 hour or longer. ICU-RC teams reported use of validated scales to assess psychologic recovery (93%), physical recovery (89%), and cognitive recovery (86%) more often in standard visits compared with COVID-RC teams (psychologic, 54%; physical, 69%; and cognitive, 46%). CONCLUSIONS: Operating structures of RCs vary, though almost all describe modest capacity and reliance on volunteerism and discretionary institutional support. ICU- and COVID-RCs in the United States employ varied funding sources and endorse different assessment measures during visits to guide care coordination. Common features include integration of ICU clinicians, interdisciplinary approach, and focus on severe critical illness. The heterogeneity in RC structures and processes contributes to future research on the optimal structure and process to achieve the best postintensive care syndrome and postacute sequelae of COVID outcomes.

13.
Crit Care Explor ; 4(2): e0624, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35128457

ABSTRACT

OBJECTIVES: Cardiac output (CO) measurements in the ICU are usually based on invasive techniques, which are technically complex and associated with clinical complications. This study aimed to compare CO measurements obtained from a noninvasive photoplethysmography-based device to a pulse contour cardiac output device in ICU patients. DESIGN: Observational, prospective, comparative clinical trial. SETTING: Single-center general ICU. PATIENTS: Patients admitted to the general ICU monitored using a pulse contour cardiac output device as per the decision of the attending physician. INTERVENTIONS: Parallel monitoring of CO using a photoplethysmography-based chest patch device and pulse contour cardiac output while the medical team was blinded to the values obtained by the noninvasive device. MEASUREMENTS AND MAIN RESULTS: Seven patients (69 measurements) were included in the final analysis. Mean CO were 7.3 ± 2.0 L/m and 7.0 ± 1.5 L/m for thermodilution and photoplethysmography, respectively. Bland-Altman showed that the photoplethysmography has a bias of 0.3 L/m with -1.6 and 2.2 L/m 95% limit of agreement (LOA) and a bias of 2.4% with 95% LOA between -25.7% and 30.5% when calculating the percentage of difference from thermodilution. The values obtained by thermodilution and photoplethysmography were highly correlated (r = 0.906). CONCLUSIONS: The tested chest patch device offers a high accuracy for CO compared to data obtained by the pulse contour cardiac output and the thermodilution method in ICU patients. Such devices could offer advanced monitoring capabilities in a variety of clinical settings, without the complications of invasive devices.

15.
J Clin Med ; 12(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36614848

ABSTRACT

There are no clear guidelines for diuretic administration in heart failure (HF), and reliable markers are needed to tailor treatment. Continuous monitoring of multiple advanced physiological parameters during diuresis may allow better differentiation of patients into subgroups according to their responses. In this study, 29 HF patients were monitored during outpatient intravenous diuresis, using a noninvasive wearable multi-parameter monitor. Analysis of changes in these parameters during the course of diuresis aimed to recognize subgroups with different response patterns. Parameters did not change significantly, however, subgroup analysis of the last quartile of treatment showed significant differences in cardiac output, cardiac index, stroke volume, pulse rate, and systemic vascular resistance according to gender, and in systolic blood pressure according to habitus. Changes in the last quartile could be differentiated using k-means, a technique of unsupervised machine learning. Moreover, patients' responses could be best clustered into four groups. Analysis of baseline parameters showed that two of the clusters differed by baseline parameters, body mass index, and diabetes status. To conclude, we show that physiological changes during diuresis in HF patients can be categorized into subgroups sharing similar response trends, making noninvasive monitoring a potential key to personalized treatment in HF.

16.
J Clin Med ; 10(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34768722

ABSTRACT

Early detection of influenza may improve responses against outbreaks. This study was part of a clinical study assessing the efficacy of a novel influenza vaccine, aiming to discover distinct, highly predictive patterns of pre-symptomatic illness based on changes in advanced physiological parameters using a novel wearable sensor. Participants were frequently monitored 24 h before and for nine days after the influenza challenge. Viral load was measured daily, and self-reported symptoms were collected twice a day. The Random Forest classifier model was used to classify the participants based on changes in the measured parameters. A total of 116 participants with ~3,400,000 data points were included. Changes in parameters were detected at an early stage of the disease, before the development of symptomatic illness. Heart rate, blood pressure, cardiac output, and systemic vascular resistance showed the greatest changes in the third post-exposure day, correlating with viral load. Applying the classifier model identified participants as flu-positive or negative with an accuracy of 0.81 ± 0.05 two days before major symptoms appeared. Cardiac index and diastolic blood pressure were the leading predicting factors when using data from the first and second day. This study suggests that frequent remote monitoring of advanced physiological parameters may provide early pre-symptomatic detection of flu.

17.
J Clin Med ; 10(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34575328

ABSTRACT

COVID-19 exerts deleterious cardiopulmonary effects, leading to a worse prognosis in the most affected. This retrospective multi-center observational cohort study aimed to analyze the trajectories of key vitals amongst hospitalized COVID-19 patients using a chest-patch wearable providing continuous remote patient monitoring of numerous vital signs. The study was conducted in five COVID-19 isolation units. A total of 492 COVID-19 patients were included in the final analysis. Physiological parameters were measured every 15 min. More than 3 million measurements were collected including heart rate, systolic and diastolic blood pressure, cardiac output, cardiac index, systemic vascular resistance, respiratory rate, blood oxygen saturation, and body temperature. Cardiovascular deterioration appeared early after admission and in parallel with changes in the respiratory parameters, showing a significant difference in trajectories within sub-populations at high risk. Early detection of cardiovascular deterioration of COVID-19 patients is achievable when using frequent remote patient monitoring.

18.
Obesity (Silver Spring) ; 29(11): 1857-1867, 2021 11.
Article in English | MEDLINE | ID: mdl-34472713

ABSTRACT

OBJECTIVE: Orexin/hypocretin (Ox) and its receptors (OxR), a neuroendocrine system centrally regulating sleep/wakefulness, were implicated in the regulation of peripheral metabolism. It was hypothesized that human adipose tissue constitutes a direct target of the OxA/OxR system that associates with distinct metabolic profile(s). METHODS: Serum Ox levels and abdominal subcutaneous and visceral adipose tissue expression of Ox/HCRT, OxR1/HCRTR1, and OxR2/HCRTR2 were measured in n = 81 patients. RESULTS: Higher morning circulating Ox levels were associated with improved lipid profile and insulin sensitivity, independently of BMI (ß = -0.363, p = 0.018 for BMI-adjusted homeostatic model of insulin resistance). Adipose HCRT mRNA was detectable in <20% of patients. Visceral HCRT expressers were mostly (80%) males and, compared with nonexpressers, had lower total and LDL cholesterol. HCRTR1 was readily detectable, and HCRTR2 was undetectable. HCRTR1 mRNA and OxR1 protein expression were higher in subcutaneous than visceral adipose tissue, and among nonobese patients, patients with obesity, and patients with obesity and T2DM were 3.4 (1.0), 0.7 (0.1), 0.6 (0.1) (AU) (p < 0.001) and 1.0 (0.2), 0.5 (0.1), 0.4 (0.1) (AU) (p = NS), respectively. Higher visceral HCRTR1 expression was associated with lower fasting insulin and homeostatic model of insulin resistance, also after adjusting for BMI. In human adipocytes, HCRTR1 expression did not exhibit significant oscillation. CONCLUSIONS: Human adipose tissue is a putative direct target of the OxA-OxR1 system, with higher morning input being associated with improved metabolic profile.


Subject(s)
Adipose Tissue , Insulin Resistance , Orexin Receptors , Orexins/genetics , Cross-Sectional Studies , Female , Humans , Intra-Abdominal Fat , Male , Orexin Receptors/genetics
19.
Nutrients ; 13(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209600

ABSTRACT

The relation between changes in respiratory quotient (RQ) following dietary interventions and clinical parameters and body fat pools remains unknown. In this randomized controlled trial, participants with moderate abdominal obesity or/and dyslipidemia (n = 159) were randomly assigned to a Mediterranean/low carbohydrate (MED/LC, n = 80) or a low fat (LF, n = 79) isocaloric weight loss diet and completed a metabolic assessment. Changes in RQ (measured by indirect calorimeter), adipose-tissue pools (MRI), and clinical measurements were assessed at baseline and after 6 months of intervention. An elevated RQ at baseline was significantly associated with increased visceral adipose tissue, hepatic fat, higher levels of insulin and homeostatic insulin resistance. After 6 months, body weight had decreased similarly between the diet groups (-6 ± 6 kg). However, the MED/LC diet, which greatly improved metabolic health, decreased RQ significantly more than the LF diet (-0.022 ± 0.007 vs. -0.002 ± 0.008, p = 0.005). Total cholesterol and diastolic blood pressure were independently associated with RQ changes (p = 0.045). RQ was positively associated with increased superficial subcutaneous-adipose-tissue but decreased renal sinus, pancreatic, and intramuscular fats after adjusting for confounders. Fasting RQ may reflect differences in metabolic characteristics between subjects affecting their potential individual response to the diet.


Subject(s)
Adipose Tissue/physiopathology , Diet, Reducing/methods , Obesity, Abdominal/diet therapy , Pulmonary Gas Exchange/physiology , Weight Loss/physiology , Adult , Calorimetry, Indirect , Diet, Carbohydrate-Restricted/methods , Diet, Fat-Restricted/methods , Female , Humans , Male , Middle Aged , Obesity, Abdominal/physiopathology , Treatment Outcome
20.
Am J Hypertens ; 34(11): 1171-1180, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34143867

ABSTRACT

BACKGROUND: Ambulatory blood pressure monitoring (ABPM) using cuff-based devices is used for diagnosis and treatment of hypertension. Technical limitations, low compliance, and complex procedures limit their use. The aim of the present study was to test the accuracy of a new photoplethysmography-based, wearable device (Wrist-monitor) as compared with the standard cuff-based ABPM device. METHODS: Twenty-four-hour (24H) ABPM was performed in parallel for both devices on volunteers aged 18-65 years, while documenting their daily activities. Level of comfort and activity disturbance of both devices were recorded. Linear regression and Bland-Altman were used to evaluate the agreement between devices. Receiver operating characteristic (ROC) curve analysis was used to classify hypertension based on the average Wrist-monitor measurements as compared with a cuff-based ABPM device. RESULTS: The study included 28 subjects (18 men) mean age 41.5 ± 16.2 years. Bland-Altman analysis resulted in 24H bias of -1.1 mm Hg for both diastolic blood pressure (DBP) and systolic blood pressure (SBP). Mean daytime bias was -1.9 mm Hg for DBP and SBP, while nighttime bias was smaller (0.7 and 0.4 mm Hg for DBP and SBP, respectively). ROC curve analysis yielded a mean area under the curve (AUC) of 1 for SBP and 24H blood pressure measurements. AUCs of 0.994 and 0.955 were found for the daytime DBP and night DBP, respectively. 24H ABPM with the Wrist-monitor caused significantly less inconvenience compared with the cuff-based device (P < 0.001). CONCLUSIONS: The cuffless device provides comparable measurements to those obtained with the currently used cuff-based ABPM device, with significantly less inconvenience to the subject. CLINICAL TRIALS REGISTRATION: Trial Number NCT03810586.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Hypertension , Adolescent , Adult , Aged , Antihypertensive Agents/therapeutic use , Blood Pressure , Blood Pressure Determination/methods , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...