Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 843: 156976, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35768032

ABSTRACT

Climate change is stressing irrigation water sources, necessitating the evaluation of alternative waters such as harvested rainwater to determine if they meet water quality and food safety standards. We collected water, soil, and produce samples between June and August 2019 from two vegetable rain garden (VRG) sites in Frederick, Maryland that harvest rainwater using a first flush system, and deliver this water to produce through subsurface irrigation. The raised VRG beds include layers of gravel, sand, and soil that act as filters. We recorded the average surface soil moisture in each bed as well as antecedent precipitation. All water (n = 29), soil (n = 55), and produce (n = 57) samples were tested for generic E. coli using standard membrane filtration, and water samples were also tested for Salmonella spp. and Listeria monocytogenes by selective enrichment. No Salmonella spp. or L. monocytogenes isolates were detected in any water samples throughout the study period. Average E. coli levels from all harvested rainwater samples at both sites (1.2 and 24.4 CFU/100 mL) were well below the Good Agricultural Practices food safety guidelines. Only 7 % (3/44) of produce samples from beds irrigated with harvested rainwater were positive for E. coli. E. coli levels in soil samples were positively associated with average surface soil moisture (r2 = 0.13, p = 0.007). Additionally, E. coli presence in water samples was marginally associated with a shorter length of antecedent dry period (fewer days since preceding rainfall) (p = 0.058). Our results suggest that harvested rainwater collected through a first flush system and applied to produce through subsurface irrigation meets current food safety standards. Soil moisture monitoring could further reduce E. coli contamination risks from harvested rainwater-irrigated produce. First flush and subsurface irrigation systems could help mitigate climate change-related water challenges while protecting food safety and security.


Subject(s)
Escherichia coli , Soil , Agricultural Irrigation , Agriculture , Food Safety , Water Microbiology
2.
Article in English | MEDLINE | ID: mdl-33953822

ABSTRACT

The COVID-19 pandemic has had an enormous impact on education globally, forcing the teaching community to think outside the box and create innovative educational plans to benefit students at home. Here, we narrate how the undergraduate, laboratory-based Summer Internship Program of our CONSERVE Center of Excellence, which focuses heavily on engaging women and underrepresented minorities in STEM programming, took a turn from an in-person research experience to a fully virtual one. We share our challenges and how we overcame them. Additionally, we provide a description of our virtual internship professional development curriculum, as well as the creative research projects that our seven interns were able to achieve in an 8-week virtual internship, including projects focused on the microbiological water quality of recycled irrigation water; social media promotion, enhancement and marketing of online educational resources focused on water, microbial contamination, and food crop irrigation; decision support systems for using recycled water in agricultural settings; and the effectiveness of zero-valent iron sand filtration in improving agricultural water quality, to name a few. Upon evaluating our internship program, we observed that more than 80% of our interns were either very satisfied or satisfied with the overall virtual internship experience. Through this experience, both the educators and the interns learned that although a virtual laboratory internship cannot completely replace in-person learning, it can still result in a very meaningful educational experience.

3.
Environ Res ; 170: 500-509, 2019 03.
Article in English | MEDLINE | ID: mdl-30703624

ABSTRACT

The use of nontraditional water sources, including reclaimed or recycled water, has become a desirable option to meet increasing demands in water stressed regions. In the Southwest United States, utilization of alternative water sources is becoming increasingly common, including use for landscape irrigation, environmental enhancement, cooling and power generation, potable reuse, and as a source water for agricultural irrigation. While much research has gone into identifying public perception towards water reuse schemes, little attention has been given to understanding grower attitudes, perceptions, and knowledge on the use of nontraditional water, including reclaimed water, in agriculture and how that may influence grower acceptance and production practices. This unique study utilized a needs assessment survey of growers (n = 521) within the Southwest region of the United States to gain an understanding of industry attitudes and needs regarding nontraditional water in agriculture. Results indicate that the majority of survey respondents were concerned with water availability (67.49%) yet less than half (48.30%) thought using a nontraditional water source in agriculture was 'very important'. Interestingly, respondents rated irrigation of 'food crops' third (42.20%) among agricultural activities for which they would be willing to use nontraditional water sources, behind irrigation of forage crops (61.60%) and dust control (61.60%). The importance of the use of nontraditional water sources in agriculture was influenced mostly by farm size (p = 0.007) and primary water source (p = 0.016), and the level of education was significant in respondent's level of concern over water availability (p = 0.021). Information on the quality of nontraditional water sources, showing that it is as good or better than respondents current sources, was found to shift rejection and uncertainty towards acceptance by 16.04%. The results of this study provide insight into perceived risks, willingness to use, drivers and constraints to grower adoption, and preferred methods of education regarding water reuse in agriculture. These findings can be used by water managers and planners to aid in the adoption of nontraditional waters, including reclaimed or recycled water, in agriculture thus extending water resources, securing food supplies, and protecting public health.


Subject(s)
Agriculture , Conservation of Water Resources/methods , Recycling , Agricultural Irrigation , Attitude , Perception , Southwestern United States , Wastewater , Water Supply
4.
Sci Total Environ ; 595: 35-40, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28376426

ABSTRACT

Coagulase negative staphylococci (CoNS) are leading causes of nosocomial infections and community-acquired methicillin-resistant CoNS (MRCoNS) infections are increasing. CoNS have been previously detected in reclaimed water. To date, no studies have evaluated the prevalence of CoNS carriage among humans exposed to reclaimed water in the U.S. We examined the prevalence and odds of CoNS and antibiotic-resistant CoNS carriage in spray irrigators exposed to reclaimed water compared to controls. We collected nasal and dermal swab samples from 19 reclaimed water spray irrigation workers (n=96 total samples) and 24 controls (n=92 total samples). Samples were analyzed for CoNS using culture-based assays. Isolates were confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was performed using disk diffusion. Data were analyzed by two-sample proportion tests, logistic regression, and generalized linear mixed effects models. The prevalence of CoNS, antibiotic-resistant CoNS, and MRCoNS carriage among spray irrigation workers was 79% (15/19), 32% (6/19), and 16% (3/19), compared to 13% (3/24), 4% (1/24), and 0% (0/24) of controls. Spray irrigators were more likely to be carriers of CoNS (p<0.01), antibiotic-resistant CoNS (p<0.01), and MRCoNS (p=0.02) compared to controls. The odds of CoNS carriage significantly increased with exposure to reclaimed water (p=0.04) even accounting for changes over time (p=0.05). Our data highlight the need to further examine the potential dissemination of CoNS and antibiotic-resistant CoNS from reclaimed water into the environment and human communities and related public health implications.


Subject(s)
Agricultural Irrigation , Carrier State/epidemiology , Occupational Exposure , Staphylococcus/isolation & purification , Coagulase , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Nose/microbiology , Prevalence , Skin/microbiology , Staphylococcus/enzymology , Water , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...