Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(22)2022 11 14.
Article in English | MEDLINE | ID: mdl-36429023

ABSTRACT

The HIF-1 and HIF-2 (HIF1/2) hypoxia responses are frequently upregulated in cancers, and HIF1/2 inhibitors are being developed as anticancer drugs. How could cancers resist anti-HIF1/2 therapy? We studied metabolic and molecular adaptations of HIF-1ß-deficient Hepa-1c4, a hepatoma model lacking HIF1/2 signalling, which mimics a cancer treated by a totally effective anti-HIF1/2 agent. [1,2-13C2]-D-glucose metabolism was measured by SiDMAP metabolic profiling, gene expression by TaqMan, and metabolite concentrations by 1H MRS. HIF-1ß-deficient Hepa-1c4 responded to hypoxia by increasing glucose uptake and lactate production. They showed higher glutamate, pyruvate dehydrogenase, citrate shuttle, and malonyl-CoA fluxes than normal Hepa-1 cells, whereas pyruvate carboxylase, TCA, and anaplerotic fluxes decreased. Hypoxic HIF-1ß-deficient Hepa-1c4 cells increased expression of PGC-1α, phospho-p38 MAPK, and PPARα, suggesting AMPK pathway activation to survive hypoxia. They had higher intracellular acetate, and secreted more H2O2, suggesting increased peroxisomal fatty acid ß-oxidation. Simultaneously increased fatty acid synthesis and degradation would have "wasted" ATP in Hepa-1c4 cells, thus raising the [AMP]:[ATP] ratio, and further contributing to the upregulation of the AMPK pathway. Since these tumour cells can proliferate without the HIF-1/2 pathways, combinations of HIF1/2 inhibitors with PGC-1α or AMPK inhibitors should be explored.


Subject(s)
AMP-Activated Protein Kinases , Hydrogen Peroxide , Humans , AMP-Activated Protein Kinases/metabolism , Cell Hypoxia/physiology , Hypoxia/metabolism , Hypoxia-Inducible Factor 1/metabolism , Fatty Acids/metabolism , Adenosine Triphosphate/metabolism
2.
Cancer Res ; 82(8): 1658-1668, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35404400

ABSTRACT

Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE: Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.


Subject(s)
Breast Neoplasms , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Breast Neoplasms/blood supply , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female , Hemoglobins , Humans , Mice , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Receptors, Estrogen , Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...