Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(22)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991024

ABSTRACT

Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.


Subject(s)
Cell-Free Nucleic Acids , Extracellular Traps , Sepsis , Thrombosis , Humans , Mice , Animals , Extracellular Traps/metabolism , Platelet Factor 4/genetics , Thrombosis/metabolism , Inflammation/metabolism , Thrombin/metabolism , Immunologic Factors , Cell-Free Nucleic Acids/metabolism
3.
Curr Opin Hematol ; 30(6): 219-229, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37603711

ABSTRACT

PURPOSE OF REVIEW: Platelet factor 4 (PF4, CXCL4), the most abundant α-granule platelet-specific chemokine, forms tetramers with an equatorial ring of high positive charge that bind to a wide range of polyanions, after which it changes conformation to expose antigenic epitopes. Antibodies directed against PF4 not only help to clear infection but can also lead to the development of thrombotic disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombocytopenia and thrombosis (VITT). This review will outline the different mechanisms through which PF4 engagement with polyanions combats infection but also contributes to the pathogenesis of inflammatory and thrombotic disease states. RECENT FINDINGS: Recent work has shown that PF4 binding to microbial polyanions may improve outcomes in infection by enhancing leukocyte-bacterial binding, tethering pathogens to neutrophil extracellular traps (NETs), decreasing the thrombotic potential of NET DNA, and modulating viral infectivity. However, PF4 binding to nucleic acids may enhance their recognition by innate immune receptors, leading to autoinflammation. Lastly, while HIT is induced by platelet activating antibodies that bind to PF4/polyanion complexes, VITT, which occurs in a small subset of patients treated with COVID-19 adenovirus vector vaccines, is characterized by prothrombotic antibodies that bind to PF4 alone. SUMMARY: Investigating the complex interplay of PF4 and polyanions may provide insights relevant to the treatment of infectious disease while also improving our understanding of the pathogenesis of thrombotic disorders driven by anti-PF4/polyanion and anti-PF4 antibodies.


Subject(s)
COVID-19 , Thrombocytopenia , Humans , Heparin/adverse effects , Platelet Factor 4/chemistry , Platelet Factor 4/metabolism , Thrombocytopenia/pathology , Antibodies/adverse effects
5.
bioRxiv ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36711969

ABSTRACT

Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.

6.
J AAPOS ; 26(1): 31-34, 2022 02.
Article in English | MEDLINE | ID: mdl-34785364

ABSTRACT

We report the case of a 14-year-old boy with history of microangiopathic hemolytic crises secondary to atypical hemolytic uremic syndrome presenting with new-onset decreased vision, flashes, and floaters in his left eye. The patient had a history of chronic retinal detachment in the right eye and retinal neovascularization in the left eye treated with panretinal photocoagulation at age 5. He was now found to have a new combined tractional-rhegmatogenous retinal detachment in the left eye. Despite surgical reattachment of the retina, he had progressive retinal and optic nerve ischemia, with resultant left eye visual acuity of light perception. To our knowledge, this is the first reported case of proliferative retinopathy and tractional and rhegmatogenous retinal detachments in a pediatric patient with atypical hemolytic uremic syndrome.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Retinal Detachment , Retinal Diseases , Vitreoretinopathy, Proliferative , Adolescent , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/surgery , Child , Child, Preschool , Humans , Laser Coagulation , Male , Retinal Detachment/diagnosis , Retinal Detachment/etiology , Retinal Detachment/surgery , Vitrectomy
7.
Blood ; 137(3): 392-397, 2021 01 21.
Article in English | MEDLINE | ID: mdl-32959045

ABSTRACT

Neutrophils are critical mediators of host defense in pathogen-induced and sterile inflammation. Excessive neutrophil activation has been associated with increased host pathology through collateral organ damage. The beneficial aspects of neutrophil activation, particularly in sterile inflammation, are less well defined. We observed accumulation of nuclear debris in the lungs of neutropenic mice exposed to acid-induced injury compared with wild type. Size analysis of DNA debris showed that neutropenic mice were unable to degrade extracellular DNA fragments. In addition, we found that neutrophils are able to differentially express DNA-degrading and repair-associated genes and proteins. Once neutrophils are at sites of lung inflammation, they are able to phagocytose and degrade extracellular DNA. This neutrophil-dependent DNA degradation occurs in a MyD88-dependent pathway. The increased DNA debris in neutropenic mice was associated with dysregulated alveolar repair and the phenotype is rescued by intratracheal administration of DNase I. Thus, we show a novel mechanism as part of the inflammatory response, in which neutrophils engulf and degrade extracellular DNA fragments and allow for optimal organ repair.


Subject(s)
Acids/adverse effects , Cell Nucleus/pathology , Lung Injury/pathology , Neutrophils/pathology , Animals , Bronchoalveolar Lavage Fluid , DNA/metabolism , Extracellular Space/metabolism , Granulocyte Colony-Stimulating Factor/deficiency , Granulocyte Colony-Stimulating Factor/metabolism , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Neutropenia/pathology , Wound Healing
8.
MAbs ; 12(1): 1850394, 2020.
Article in English | MEDLINE | ID: mdl-33323006

ABSTRACT

Neutrophils can release DNA and granular cytoplasmic proteins that form smooth filaments of stacked nucleosomes (NS). These structures, called neutrophil extracellular traps (NETs), are involved in multiple pathological processes, and NET formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity toward intact NS but not to individual NS components, indicating that 2C5 could potentially target NS in NETs. In this study, NETs were generated in vitro using neutrophils and HL-60 cells differentiated into granulocyte-like cells. The specificity of 2C5 toward NETs was evaluated by ELISA, which showed that it binds to NETs with the specificity similar to that for purified nucleohistone substrate. Immunofluorescence showed that 2C5 stains NETs in both static and perfused microfluidic cell cultures, even after NET compaction. Modification of liposomes with 2C5 dramatically enhanced liposome association with NETs. Our results suggest that 2C5 could be used to identify and visualize NETs and serve as a ligand for NET-targeted diagnostics and therapies.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Antibody Specificity , Extracellular Traps , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Extracellular Traps/chemistry , Extracellular Traps/immunology , HL-60 Cells , Humans , Mice , Mice, Inbred BALB C
9.
Blood Adv ; 4(23): 6051-6063, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33290544

ABSTRACT

Most children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have mild or minimal disease, with a small proportion developing severe disease or multisystem inflammatory syndrome in children (MIS-C). Complement-mediated thrombotic microangiopathy (TMA) has been associated with SARS-CoV-2 infection in adults but has not been studied in the pediatric population. We hypothesized that complement activation plays an important role in SARS-CoV-2 infection in children and sought to understand if TMA was present in these patients. We enrolled 50 hospitalized pediatric patients with acute SARS-CoV-2 infection (n = 21, minimal coronavirus disease 2019 [COVID-19]; n = 11, severe COVID-19) or MIS-C (n = 18). As a biomarker of complement activation and TMA, soluble C5b9 (sC5b9, normal 247 ng/mL) was measured in plasma, and elevations were found in patients with minimal disease (median, 392 ng/mL; interquartile range [IQR], 244-622 ng/mL), severe disease (median, 646 ng/mL; IQR, 203-728 ng/mL), and MIS-C (median, 630 ng/mL; IQR, 359-932 ng/mL) compared with 26 healthy control subjects (median, 57 ng/mL; IQR, 9-163 ng/mL; P < .001). Higher sC5b9 levels were associated with higher serum creatinine (P = .01) but not age. Of the 19 patients for whom complete clinical criteria were available, 17 (89%) met criteria for TMA. A high proportion of tested children with SARS-CoV-2 infection had evidence of complement activation and met clinical and diagnostic criteria for TMA. Future studies are needed to determine if hospitalized children with SARS-CoV-2 should be screened for TMA, if TMA-directed management is helpful, and if there are any short- or long-term clinical consequences of complement activation and endothelial damage in children with COVID-19 or MIS-C.


Subject(s)
COVID-19/diagnosis , Thrombotic Microangiopathies/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Adolescent , Antibodies, Viral/blood , Biomarkers/metabolism , COVID-19/pathology , COVID-19/virology , Child , Child, Preschool , Cluster Analysis , Complement Membrane Attack Complex/metabolism , Creatinine/blood , Female , Humans , Male , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombotic Microangiopathies/complications
10.
J Clin Invest ; 130(11): 5967-5975, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32730233

ABSTRACT

BACKGROUNDInitial reports from the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic described children as being less susceptible to coronavirus disease 2019 (COVID-19) than adults. Subsequently, a severe and novel pediatric disorder termed multisystem inflammatory syndrome in children (MIS-C) emerged. We report on unique hematologic and immunologic parameters that distinguish between COVID-19 and MIS-C and provide insight into pathophysiology.METHODSWe prospectively enrolled hospitalized patients with evidence of SARS-CoV-2 infection and classified them as having MIS-C or COVID-19. Patients with COVID-19 were classified as having either minimal or severe disease. Cytokine profiles, viral cycle thresholds (Cts), blood smears, and soluble C5b-9 values were analyzed with clinical data.RESULTSTwenty patients were enrolled (9 severe COVID-19, 5 minimal COVID-19, and 6 MIS-C). Five cytokines (IFN-γ, IL-10, IL-6, IL-8, and TNF-α) contributed to the analysis. TNF-α and IL-10 discriminated between patients with MIS-C and severe COVID-19. The presence of burr cells on blood smears, as well as Cts, differentiated between patients with severe COVID-19 and those with MIS-C.CONCLUSIONPediatric patients with SARS-CoV-2 are at risk for critical illness with severe COVID-19 and MIS-C. Cytokine profiling and examination of peripheral blood smears may distinguish between patients with MIS-C and those with severe COVID-19.FUNDINGFinancial support for this project was provided by CHOP Frontiers Program Immune Dysregulation Team; National Institute of Allergy and Infectious Diseases; National Cancer Institute; the Leukemia and Lymphoma Society; Cookies for Kids Cancer; Alex's Lemonade Stand Foundation for Childhood Cancer; Children's Oncology Group; Stand UP 2 Cancer; Team Connor; the Kate Amato Foundations; Burroughs Wellcome Fund CAMS; the Clinical Immunology Society; the American Academy of Allergy, Asthma, and Immunology; and the Institute for Translational Medicine and Therapeutics.


Subject(s)
Betacoronavirus/metabolism , Complement Membrane Attack Complex/metabolism , Coronavirus Infections , Cytokines/blood , Pandemics , Pneumonia, Viral , Systemic Inflammatory Response Syndrome , Adolescent , COVID-19 , Child , Child, Preschool , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Female , Humans , Male , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Prospective Studies , SARS-CoV-2 , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/epidemiology
11.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L137-L147, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32159969

ABSTRACT

Neutrophil extracellular traps (NETs) provide host defense but can contribute to the pathobiology of diverse human diseases. We sought to determine the extent and mechanism by which NETs contribute to human airway cell inflammation. Primary normal human bronchial epithelial cells (HBEs) grown at air-liquid interface and wild-type (wt)CFBE41o- cells (expressing wtCFTR) were exposed to cell-free NETs from unrelated healthy volunteers for 18 h in vitro. Cytokines were measured in the apical supernatant by Luminex, and the effect on the HBE transcriptome was assessed by RNA sequencing. NETs consistently stimulated IL-8, TNF-α, and IL-1α secretion by HBEs from multiple donors, with variable effects on other cytokines (IL-6, G-CSF, and GM-CSF). Expression of HBE RNAs encoding IL-1 family cytokines, particularly IL-36 subfamily members, was increased in response to NETs. NET exposure in the presence of anakinra [recombinant human IL-1 receptor antagonist (rhIL-1RA)] dampened NET-induced changes in IL-8 and TNF-α proteins as well as IL-36α RNA. rhIL-36RA limited the increase in expression of proinflammatory cytokine RNAs in HBEs exposed to NETs. NETs selectively upregulate an IL-1 family cytokine response in HBEs, which enhances IL-8 production and is limited by rhIL-1RA. The present findings describe a unique mechanism by which NETs may contribute to inflammation in human lung disease in vivo. NET-driven IL-1 signaling may represent a novel target for modulating inflammation in diseases characterized by a substantial NET burden.


Subject(s)
Bronchi/cytology , Epithelial Cells/metabolism , Extracellular Traps/metabolism , Interleukin-1/metabolism , Interleukin-8/metabolism , Adult , Cell Line , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Leukocyte Elastase/metabolism , Peroxidase/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Transcription, Genetic/drug effects
12.
Blood ; 135(10): 743-754, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31722003

ABSTRACT

Sepsis is characterized by multiorgan system dysfunction that occurs because of infection. It is associated with high morbidity and mortality and is in need of improved therapeutic interventions. Neutrophils play a crucial role in sepsis, releasing neutrophil extracellular traps (NETs) composed of DNA complexed with histones and toxic antimicrobial proteins that ensnare pathogens, but also damage host tissues. At presentation, patients often have a significant NET burden contributing to the multiorgan damage. Therefore, interventions that inhibit NET release would likely be ineffective at preventing NET-based injury. Treatments that enhance NET degradation may liberate captured bacteria and toxic NET degradation products (NDPs) and likely be of limited therapeutic benefit as well. We propose that interventions that stabilize NETs and sequester NDPs may be protective in sepsis. We showed that platelet factor 4 (PF4), a platelet-associated chemokine, binds and compacts NETs, increasing their resistance to DNase I. We now show that PF4 increases NET-mediated bacterial capture, reduces the release of NDPs, and improves outcome in murine models of sepsis. A monoclonal antibody KKO which binds to PF4-NET complexes, further enhances DNase resistance. However, the Fc portion of this antibody activates the immune response and increases thrombotic risk, negating any protective effects in sepsis. Therefore, we developed an Fc-modified KKO that does not induce these negative outcomes. Treatment with this antibody augmented the effects of PF4, decreasing NDP release and bacterial dissemination and increasing survival in murine sepsis models, supporting a novel NET-targeting approach to improve outcomes in sepsis.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunoglobulin G/therapeutic use , Sepsis/drug therapy , Animals , Antibodies, Monoclonal/chemistry , Cells, Cultured , Disease Models, Animal , Female , Heparin/immunology , Human Umbilical Vein Endothelial Cells , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Platelet Factor 4/genetics , Platelet Factor 4/immunology , Sepsis/complications , Sepsis/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/complications , Thrombocytopenia/pathology , Thrombocytopenia/therapy
13.
Transfus Apher Sci ; 58(5): 602-612, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31543256

ABSTRACT

Over the past decades hemophilia has been transformed from a debilitating disease to a manageable condition. However, the current treatment options are expensive, complex, and inaccessible to a large portion of the global population. Moreover, the development of antibodies to replacement factors, termed inhibitors, is a common complication that not only renders conventional prophylaxis regimens ineffective but also increases the annual bleeding rate in affected patients. Fortunately, much progress has been made toward developing a curative gene therapy treatment for hemophilia and these efforts have led to a series of human trials with promising results. This review seeks to address some of the new issues raised by recent progress in the field, including the differences between available recombinant adeno-associated viral (rAAV) vectors, the etiology of transaminitis following vector administration, and techniques to induce long-term factor expression. We also address other unresolved questions, including strategies to overcome pre-existing neutralizing antibodies to AAV, approaches that can make vector re-administration possible, and whether gene therapy can be used to induce factor tolerance and treat inhibitors. Finally, we discuss logistical and ethical issues related to hemophilia gene therapy including how to accurately measure therapeutic outcomes, when to consider treatment of pediatric patients, and how to equitably price the medication to ensure fair compensation while maximizing accessibility. As the field marches forward from clinical trials towards clinical application, answers to these questions will determine the future of gene therapy for hemophilia.


Subject(s)
Dependovirus , Genetic Therapy , Genetic Vectors , Hemophilia A , Genetic Therapy/methods , Genetic Therapy/trends , Hemophilia A/blood , Hemophilia A/genetics , Hemophilia A/therapy , Humans
14.
Blood ; 133(4): 287-288, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679234
16.
JCI Insight ; 3(18)2018 09 20.
Article in English | MEDLINE | ID: mdl-30232279

ABSTRACT

Heparin-induced thrombocytopenia (HIT) is an immune-mediated thrombocytopenic disorder associated with a severe prothrombotic state. We investigated whether neutrophils and neutrophil extracellular traps (NETs) contribute to the development of thrombosis in HIT. Using an endothelialized microfluidic system and a murine passive immunization model, we show that HIT induction leads to increased neutrophil adherence to venous endothelium. In HIT mice, endothelial adherence is enhanced immediately downstream of nascent venous thrombi, after which neutrophils undergo retrograde migration via a CXCR2-dependent mechanism to accumulate into the thrombi. Using a microfluidic system, we found that PF4 binds to NETs, leading them to become compact and DNase resistant. PF4-NET complexes selectively bind HIT antibodies, which further protect them from nuclease digestion. In HIT mice, inhibition of NET formation through Padi4 gene disruption or DNase treatment limited venous thrombus size. PAD4 inactivation did affect arterial thrombi or severity of thrombocytopenia in HIT. Thus, neutrophil activation contributes to the development of venous thrombosis in HIT by enhancing neutrophil-endothelial adhesion and neutrophil clot infiltration, where incorporated PF4-NET-HIT antibody complexes lead to thrombosis propagation. Inhibition of neutrophil endothelial adhesion, prevention of neutrophil chemokine-dependent recruitment of neutrophils to thrombi, or suppression of NET release should be explored as strategies to prevent venous thrombosis in HIT.


Subject(s)
Extracellular Traps/immunology , Neutrophils/immunology , Thrombocytopenia/immunology , Thrombosis/immunology , Animals , Autoimmune Diseases/immunology , Cell Movement , Endothelial Cells , Humans , Leukocytes , Lymphatic Vessels , Male , Mice , Mice, Knockout , Neutrophil Activation , Platelet Factor 4/genetics , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases/genetics , Receptors, Interleukin-8B/metabolism
17.
Curr Opin Hematol ; 24(6): 565-571, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28985194

ABSTRACT

PURPOSE OF REVIEW: Donor-derived platelets have proven to be of hemostatic value in many clinical settings. There is a fear that the need for platelets may outgrow the donor pool in first-world countries. Moreover, there are other challenges with donor platelets that add to the impetus to find an alternative platelet source, especially after the megakaryocyte cytokine thrombopoietin was identified. Megakaryocytes have since been differentiated from numerous cell sources and the observed released platelet-like particles (PLPs) have led to calls to develop such products for clinical use. The development of megakaryocytes from embryonic stem cell also supported the concept of developing nondonor-based platelets. RECENT FINDINGS: Several groups have claimed that nondonor-based platelets derived from in-vitro grown megakaryocytes may soon become available to supplement or replace donor-derived products, but their number and quality has been wanting. A possible alternative of directly infusing megakaryocytes that release platelets in the lungs - similar to that recently shown for endogenous megakaryocytes - has been proposed. SUMMARY: This present review will describe the present state-of-the-art in generating and delivering nondonor-derived platelets. Progress has been slow, but advances in our ability to generate human megakaryocytes in culture, generate PLPs from these cells, and test the functionality of the resultant platelets in vitro and in vivo have identified important remaining challenges and raised alternative potential solutions.


Subject(s)
Blood Component Transfusion , Blood Platelets , Cell Culture Techniques/methods , Human Embryonic Stem Cells , Megakaryocytes , Blood Platelets/cytology , Blood Platelets/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Megakaryocytes/cytology , Megakaryocytes/transplantation
18.
Am J Respir Cell Mol Biol ; 56(2): 261-270, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27755915

ABSTRACT

Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7-/- and Cxcl4-/- knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7-/- mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4-/- mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability.


Subject(s)
Acute Lung Injury/blood , Blood Platelets/metabolism , Chemokines, CXC/blood , Platelet Factor 4/blood , Animals , Capillary Permeability , Humans , Lung/blood supply , Lung/pathology , Mice, Transgenic
19.
Blood Adv ; 1(18): 1452-1465, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-29296786

ABSTRACT

Diverse human illnesses are characterized by loss or inactivation of endothelial thrombomodulin (TM), predisposing to microvascular inflammation, activation of coagulation, and tissue ischemia. Single-chain antibody fragment (scFv)/TM) fusion proteins, previously protective against end-organ injury in murine models of inflammation, are attractive candidates to treat inflammatory thrombosis. However, animal models have inherent differences in TM and coagulation biology, are limited in their ability to resolve and control endothelial biology, and do not allow in-depth testing of "humanized" scFv/TM fusion proteins, which are necessary for translation to the clinical domain. To address these challenges, we developed a human whole-blood, microfluidic model of inflammatory, tissue factor (TF)-driven coagulation that features a multichannel format for head-to-head comparison of therapeutic approaches. In this model, fibrin deposition, leukocyte adhesion, and platelet adhesion and aggregation showed a dose-dependent response to tumor necrosis factor-α activation and could be quantified via real-time microscopy. We used this model to compare hTM/R6.5, a humanized, intracellular adhesion molecule 1 (ICAM-1)-targeted scFv/TM biotherapeutic, to untargeted antithrombotic agents, including soluble human TM (shTM), anti-TF antibodies, and hirudin. The targeted hTM/R6.5 more effectively inhibited TF-driven coagulation in a protein C (PC)-dependent manner and demonstrated synergy with supplemental PC. These results support the translational prospects of ICAM-targeted scFv/TM and illustrate the utility of the microfluidic system as a platform to study humanized therapeutics at the interface of endothelium and whole blood under flow.

20.
J Hosp Med ; 7(1): 8-13, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21994146

ABSTRACT

BACKGROUND: A bacterial cause is not frequently identified in children with pneumonia complicated by parapneumonic effusion (ie, complicated pneumonia). OBJECTIVES: To determine the frequency of positive blood and pleural fluid cultures in children with complicated pneumonia and to determine whether broad-range 16S rRNA polymerase chain reaction (PCR) improves identification of a microbiologic cause. METHODS: This prospective cohort study included children 1-18 years of age hospitalized with complicated pneumonia. RESULTS: Pleural fluid drainage was performed in 64 (51.6%) of 124 children with complicated pneumonia. A microbiologic cause was identified in 11 of 64 patients (17.2%; 95% confidence interval [CI]: 8.9%-28.7%). Bacteria were isolated from pleural fluid culture in 6 of 64 patients (9.4 %; 95% CI: 3.5%-19.3%) undergoing pleural drainage; the causative bacteria were Staphylococcus aureus (n = 5) and Streptococcus pneumoniae (n = 1). Blood culture identified a bacterial cause in 3 of 44 cases (6.8%; 95% CI: 1.4%-18.7%) undergoing pleural fluid drainage; S. pneumoniae (n = 1), Haemophilus influenzae (n = 1), and S. aureus (n = 1) were isolated. Only 3 of the 19 pleural fluid samples (15.8%; 95% CI: 3.4%-39.6%) analyzed with 16S rRNA PCR were positive. S. pneumoniae was the only organism detected in all three samples; two of these three had negative pleural fluid cultures and absence of bacteria on Gram stain. S. aureus was isolated from pleural fluid culture in one patient with a negative 16S rRNA PCR test. CONCLUSIONS: Causative bacteria were infrequently identified in children with complicated pneumonia. Broad-range 16S rRNA PCR only modestly improved the microbiologic yield over conventional culture methods.


Subject(s)
Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Polymerase Chain Reaction/methods , Staphylococcus aureus/isolation & purification , Streptococcus pneumoniae/isolation & purification , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Pleural Effusion/diagnosis , Pleural Effusion/genetics , Pleural Effusion/microbiology , Pneumonia, Bacterial/genetics , Prospective Studies , Staphylococcus aureus/genetics , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...