Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 12: 1359192, 2024.
Article in English | MEDLINE | ID: mdl-38919927

ABSTRACT

The COVID-19 pandemic provided an additional spotlight on the longstanding socioeconomic/health impacts of redlining and has added to the myriad of environmental justice issues, which has caused significant loss of life, health, and productive work. The Centers for Disease Control and Prevention (CDC) reports that a person with any selected underlying health conditions is more likely to experience severe COVID-19 symptoms, with more than 81% of COVID-19-related deaths among people aged 65 years and older. The effects of COVID-19 are not homogeneous across populations, varying by socioeconomic status, PM2.5 exposure, and geographic location. This variability is supported by analysis of existing data as a function of the number of cases and deaths per capita/1,00,000 persons. We investigate the degree of correlation between these parameters, excluding health conditions and age. We found that socioeconomic variables alone contribute to ~40% of COVID-19 variability, while socioeconomic parameters, combined with political affiliation, geographic location, and PM2.5 exposure levels, can explain ~60% of COVID-19 variability per capita when using an OLS regression model; socioeconomic factors contribute ~28% to COVID-19-related deaths. Using spatial coordinates in a Random Forest (RF) regressor model significantly improves prediction accuracy by ~120%. Data visualization products reinforce the fact that the number of COVID-19 deaths represents 1% of COVID-19 cases in the US and globally. A larger number of democratic voters, larger per-capita income, and age >65 years is negatively correlated (associated with a decrease) with the number of COVID cases per capita. Several distinct regions of negative and positive correlations are apparent, which are dominated by two major regions of anticorrelation: (1) the West Coast, which exhibits high PM2.5 concentrations and fewer COVID-19 cases; and (2) the middle portion of the US, showing mostly high number of COVID-19 cases and low PM2.5 concentrations. This paper underscores the importance of exercising caution and prudence when making definitive causal statements about the contribution of air quality constituents (such as PM2.5) and socioeconomic factors to COVID-19 mortality rates. It also highlights the importance of implementing better health/lifestyle practices and examines the impact of COVID-19 on vulnerable populations, particularly regarding preexisting health conditions and age. Although PM2.5 contributes comparable deaths (~7M) per year, globally as smoking cigarettes (~8.5M), quantifying any causal contribution toward COVID-19 is non-trivial, given the primary causes of COVID-19 death and confounding factors. This becomes more complicated as air pollution was reduced significantly during the lockdowns, especially during 2020. This statistical analysis provides a modular framework, that can be further expanded with the context of multilevel analysis (MLA). This study highlights the need to address socioeconomic and environmental disparities to better prepare for future pandemics. By understanding how factors such as socioeconomic status, political affiliation, geographic location, and PM2.5 exposure contribute to the variability in COVID-19 outcomes, policymakers and public health officials can develop targeted strategies to protect vulnerable populations. Implementing improved health and lifestyle practices and mitigating environmental hazards will be essential in reducing the impact of future public health crises on marginalized communities. These insights can guide the development of more resilient and equitable health systems capable of responding effectively to similar future scenarios.


Subject(s)
COVID-19 , Socioeconomic Factors , Humans , COVID-19/epidemiology , COVID-19/mortality , United States/epidemiology , Aged , SARS-CoV-2 , Particulate Matter , Sociodemographic Factors , Air Pollution/adverse effects , Pandemics
2.
BMJ Glob Health ; 8(6)2023 06.
Article in English | MEDLINE | ID: mdl-37286235

ABSTRACT

The discourse on vulnerability to COVID-19 or any other pandemic is about the susceptibility to the effects of disease outbreaks. Over time, vulnerability has been assessed through various indices calculated using a confluence of societal factors. However, categorising Arctic communities, without considering their socioeconomic, cultural and demographic uniqueness, into the high and low continuum of vulnerability using universal indicators will undoubtedly result in the underestimation of the communities' capacity to withstand and recover from pandemic exposure. By recognising vulnerability and resilience as two separate but interrelated dimensions, this study reviews the Arctic communities' ability to cope with pandemic risks. In particular, we have developed a pandemic vulnerability-resilience framework for Alaska to examine the potential community-level risks of COVID-19 or future pandemics. Based on the combined assessment of the vulnerability and resilience indices, we found that not all highly vulnerable census areas and boroughs had experienced COVID-19 epidemiological outcomes with similar severity. The more resilient a census area or borough is, the lower the cumulative death per 100 000 and case fatality ratio in that area. The insight that pandemic risks are the result of the interaction between vulnerability and resilience could help public officials and concerned parties to accurately identify the populations and communities at most risk or with the greatest need, which, in turn, helps in the efficient allocation of resources and services before, during and after a pandemic. A resilience-vulnerability-focused approach described in this paper can be applied to assess the potential effect of COVID-19 and similar future health crises in remote regions or regions with large Indigenous populations in other parts of the world.


Subject(s)
COVID-19 , Humans , Alaska/epidemiology , Disease Outbreaks , Pandemics
4.
Front Public Health ; 11: 1324105, 2023.
Article in English | MEDLINE | ID: mdl-38259778

ABSTRACT

Objectives: This study examines the COVID-19 pandemic's spatiotemporal dynamics in 52 sub-regions in eight Arctic states. This study further investigates the potential impact of early vaccination coverage on subsequent COVID-19 outcomes within these regions, potentially revealing public health insights of global significance. Methods: We assessed the outcomes of the COVID-19 pandemic in Arctic sub-regions using three key epidemiological variables: confirmed cases, confirmed deaths, and case fatality ratio (CFR), along with vaccination rates to evaluate the effectiveness of the early vaccination campaign on the later dynamics of COVID-19 outcomes in these regions. Results: From February 2020 to February 2023, the Arctic experienced five distinct waves of COVID-19 infections and fatalities. However, most Arctic regions consistently maintained Case Fatality Ratios (CFRs) below their respective national levels throughout these waves. Further, the regression analysis indicated that the impact of initial vaccination coverage on subsequent cumulative mortality rates and Case Fatality Ratio (CFR) was inverse and statistically significant. A common trend was the delayed onset of the pandemic in the Arctic due to its remoteness. A few regions, including Greenland, Iceland, the Faroe Islands, Northern Canada, Finland, and Norway, experienced isolated spikes in cases at the beginning of the pandemic with minimal or no fatalities. In contrast, Alaska, Northern Sweden, and Russia had generally high death rates, with surges in cases and fatalities. Conclusion: Analyzing COVID-19 data from 52 Arctic subregions shows significant spatial and temporal variations in the pandemic's severity. Greenland, Iceland, the Faroe Islands, Northern Canada, Finland, and Norway exemplify successful pandemic management models characterized by low cases and deaths. These outcomes can be attributed to successful vaccination campaigns, and proactive public health initiatives along the delayed onset of the pandemic, which reduced the impact of COVID-19, given structural and population vulnerabilities. Thus, the Arctic experience of COVID-19 informs preparedness for future pandemic-like public health emergencies in remote regions and marginalized communities worldwide that share similar contexts.


Subject(s)
COVID-19 , Public Health , Humans , Arctic Regions , COVID-19/epidemiology , Pandemics , Alaska
5.
Int J Circumpolar Health ; 81(1): 2109562, 2022 12.
Article in English | MEDLINE | ID: mdl-35976076

ABSTRACT

The second year of the COVID-19 pandemic in the Arctic was dominated by the Delta wave that primarily lasted between July and December 2021 with varied epidemiological outcomes. An analysis of the Arctic's subnational COVID-19 data revealed a massive increase in cases and deaths across all its jurisdictions but at varying time periods. However, the case fatality ratio (CFR) in most Arctic regions did not rise dramatically and was below national levels (except in Northern Russia). Based on the spatiotemporal patterns of the Delta outbreak, we identified four types of pandemic waves across Arctic regions: Tsunami (Greenland, Iceland, Faroe Islands, Northern Norway, Northern Finland, and Northern Canada), Superstorm (Alaska), Tidal wave (Northern Russia), and Protracted Wave (Northern Sweden). These regionally varied COVID-19 epidemiological dynamics are likely attributable to the inconsistency in implementing public health prevention measures, geographical isolation, and varying vaccination rates. A lesson remote and Indigenous communities can learn from the Arctic is that the three-prong (delay-prepare-respond) approach could be a tool in curtailing the impact of COVID-19 or future pandemics. This article is motivated by previous research that examined the first and second waves of the pandemic in the Arctic. Data are available at https://arctic.uni.edu/arctic-covid-19.


Subject(s)
COVID-19 , Pandemics , Alaska/epidemiology , Arctic Regions , Greenland , Humans
7.
Int J Circumpolar Health ; 80(1): 1925446, 2021 12.
Article in English | MEDLINE | ID: mdl-34125008

ABSTRACT

This article focuses on the "second wave" of the COVID-19 pandemic in the Arctic and examines spatiotemporal patterns between July 2020 and January 2021. We analyse available COVID-19 data at the regional (subnational) level to elucidate patterns and typology of Arctic regions with respect to the COVID-19 pandemic. This article builds upon our previous research that examined the early phase of the COVID-19 pandemic between February and July 2020. The pandemic's "second wave" observed in the Arctic between September 2020 and January 2021 was severe in terms of COVID-19 infections and fatalities, having particularly strong impacts in Alaska, Northern Russia and Northern Sweden. Based on the spatiotemporal patterns of the "second wave" dynamics, we identified 5 types of the pandemic across regions: Shockwaves (Iceland, Faroe Islands, Northern Norway, and Northern Finland), Protracted Waves (Northern Sweden), Tidal Waves (Northern Russia), Tsunami Waves (Alaska), and Isolated Splashes (Northern Canada and Greenland). Although data limitations and gaps persist, monitoring of COVID-19 is critical for developing a proper understanding of the pandemic in order to develop informed and effective responses to the current crisis and possible future pandemics in the Arctic. Data used in this paper are available at https://arctic.uni.edu/arctic-covid-19.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/epidemiology , Population Surveillance , Arctic Regions , COVID-19/diagnosis , Humans , Incidence
8.
Int J Circumpolar Health ; 79(1): 1835251, 2020 12.
Article in English | MEDLINE | ID: mdl-33074067

ABSTRACT

Since February 2020 the COVID-19 pandemic has been unfolding in the Arctic, placing many communities at risk due to remoteness, limited healthcare options, underlying health issues and other compounding factors. Preliminary analysis of available COVID-19 data in the Arctic at the regional (subnational) level suggests that COVID-19 infections and mortality were highly variable, but generally remained below respective national levels. Based on the trends and magnitude of the pandemic through July, we classify Arctic regions into four groups: Iceland, Faroe Islands, Northern Norway, and Northern Finland with elevated early incidence rates, but where strict quarantines and other measures promptly curtailed the pandemic; Northern Sweden and Alaska, where the initial wave of infections persisted amid weak (Sweden) or variable (Alaska) quarantine measures; Northern Russia characterised by the late start and subsequent steep growth of COVID-19 cases and fatalities and multiple outbreaks; and Northern Canada and Greenland with no significant proliferation of the pandemic. Despite limitations in available data, further efforts to track and analyse the pandemic at the pan-Arctic, regional and local scales are crucial. This includes understanding of the COVID-19 patterns, mortality and morbidity, the relationships with public-health conditions, socioeconomic characteristics, policies, and experiences of the Indigenous Peoples. Data used in this paper are available at https://arctic.uni.edu/arctic-covid-19.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Alaska/epidemiology , Arctic Regions/epidemiology , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Europe/epidemiology , Humans , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Russia/epidemiology , SARS-CoV-2 , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...