Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Virol Methods ; 208: 152-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25066276

ABSTRACT

The objectives of this study were to develop a user-friendly, gel element microarray test for influenza virus detection, subtyping, and neuraminidase inhibitor resistance detection, assess the performance characteristics of the assay, and perform a clinical evaluation on retrospective nasopharyngeal swab specimens. A streamlined microarray workflow enabled a single user to run up to 24 tests in an 8h shift. The most sensitive components of the test were the primers and probes targeting the A/H1 pdm09 HA gene with an analytical limit of detection (LoD) <100 gene copies (gc) per reaction. LoDs for all targets in nasopharyngeal swab samples were ≤1000 gc, with the exception of one target in the seasonal A/H1N1 subtype. Seasonal H275Y variants were detectable in a mixed population when present at >5% with wild type virus, while the 2009 pandemic H1N1 H275Y variant was detectable at ≤1% in a mixture with pandemic wild type virus. Influenza typing and subtyping results concurred with those obtained with real-time RT-PCR assays on more than 97% of the samples tested. The results demonstrate that a large panel of single-plex, real-time RT-PCR tests can be translated to an easy-to-use, sensitive, and specific microarray test for potential diagnostic use.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/isolation & purification , Microarray Analysis/methods , Molecular Diagnostic Techniques/methods , Neuraminidase/genetics , Viral Proteins/genetics , Antiviral Agents/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Laboratories , Molecular Typing/methods , Mutant Proteins/genetics , Nasopharynx/virology , Oseltamivir/pharmacology , Retrospective Studies , Sensitivity and Specificity , Time Factors , Workforce
2.
Clin Chim Acta ; 429: 198-205, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24360850

ABSTRACT

BACKGROUND: Genetic polymorphisms in the CYP2C9 and VKORC1 genes have been linked to sensitivity of the anticoagulant drug warfarin. The aim of this study is to demonstrate a method for warfarin sensitivity genotyping using gel element microarray technology in a simplified workflow from sample collection to analysis and detection. METHODS: We developed an integrated amplification microarray system combining PCR amplification, target labeling, and microarray hybridization within a single, closed-amplicon "lateral flow cell" for genotyping three single nucleotide polymorphisms (SNPs) that influence warfarin response. We combined nucleic acid extraction of saliva using the TruTip technology together with the lateral flow cell assay and with fully automated array detection and analysis. RESULTS: The analytical performance of the assay was tested using 20 genotyped human genomic DNA samples and found to be sensitive down to 330 input genomic copies (1 ng). A follow-up pre-clinical evaluation was performed with 65 blinded saliva samples and the genotyping results were in agreement with those determined by bidirectional sequencing. CONCLUSIONS: Combined with the use of non-invasive saliva samples, rapid DNA extraction, the lateral flow cell, automatic imaging and data analysis provides a simple and fast sample-to-answer microarray test for warfarin sensitivity genotyping.


Subject(s)
Genotyping Techniques/methods , Oligonucleotide Array Sequence Analysis/methods , Polymerase Chain Reaction/methods , Saliva/cytology , Saliva/metabolism , Warfarin/pharmacology , Alleles , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2C9 , Humans , Polymorphism, Single Nucleotide , Systems Integration , Vitamin K Epoxide Reductases/genetics
3.
Anal Biochem ; 421(2): 526-33, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22033291

ABSTRACT

By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer, 2-(hydroxyethyl) methacrylamide (HEMAA), was used. HEMAA possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers. Probe immobilization efficiency within the new polymer was 55%, equivalent to that obtained with acrylamide (AA) and methacrylamide (MA) monomers. Nonspecific binding of single-stranded targets was equivalent for all monomers. Increasing cross-linker chain length improved hybridization kinetics and end-point signal intensities relative to N,N-methylenebisacrylamide (Bis). The new copolymer formulation was successfully applied to a model orthopox array. Because HEMAA greatly simplifies gel element array manufacture, we expect it (in combination with new cross-linkers described here) to find widespread application in microarray science.


Subject(s)
Gels , Methacrylates/chemistry , Oligonucleotide Array Sequence Analysis , Base Sequence , Kinetics , Oligonucleotide Probes , Polymerase Chain Reaction , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...