Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Lipid Res ; 64(11): 100452, 2023 11.
Article in English | MEDLINE | ID: mdl-37783389

ABSTRACT

Previously, we and others reported a rapid and dramatic increase in brain prostanoids (PG), including prostaglandins, prostacyclins, and thromboxanes, under ischemia that is traditionally explained through the activation of esterified arachidonic acid (20:4n6) release by phospholipases as a substrate for cyclooxygenases (COX). However, the availability of another required COX substrate, oxygen, has not been considered in this mechanism. To address this mechanism for PG upregulation through oxygen availability, we analyzed mouse brain PG, free 20:4n6, and oxygen levels at different time points after ischemic onset using head-focused microwave irradiation (MW) to inactivate enzymes in situ before craniotomy. The oxygen half-life in the ischemic brain was 5.32 ± 0.45 s and dropped to undetectable levels within 12 s of ischemia onset, while there were no significant free 20:4n6 or PG changes at 30 s of ischemia. Furthermore, there was no significant PG increase at 2 and 10 min after ischemia onset compared to basal levels, while free 20:4n6 was increased ∼50 and ∼100 fold, respectively. However, PG increased ∼30-fold when ischemia was followed by craniotomy of nonMW tissue that provided oxygen for active enzymes. Moreover, craniotomy performed under anoxic conditions without MW did not result in PG induction, while exposure of these brains to atmospheric oxygen significantly induced PG. Our results indicate, for the first time, that oxygen availability is another important regulatory factor for PG production under ischemia. Further studies are required to investigate the physiological role of COX/PG regulation through tissue oxygen concentration.


Subject(s)
Brain Ischemia , Prostaglandins , Mice , Animals , Oxygen , Prostaglandin-Endoperoxide Synthases , Ischemia
2.
Parasit Vectors ; 16(1): 239, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464386

ABSTRACT

BACKGROUND: The mechanisms underlying the clinical outcome disparity during human infection with Giardia duodenalis are still unclear. In recent years, evidence has pointed to the roles of host factors as well as parasite's genetic heterogeneity as major contributing factors in the development of symptomatic human giardiasis. However, it remains contested as to how only a small fraction of individuals infected with G. duodenalis develop clinical gastrointestinal manifestations, whereas the majority of infected individuals remain asymptomatic. Here, we demonstrate that diversity in the fecal microbiome correlates with the clinical outcome of human giardiasis. METHODS: The genetic heterogeneity of G. duodenalis clinical isolates from human subjects with asymptomatic and symptomatic giardiasis was determined using a multilocus analysis approach. We also assessed the genetic proximity of G. duodenalis isolates by constructing phylogenetic trees using the maximum likelihood. Total genomic DNA (gDNA) from fecal specimens was utilized to construct DNA libraries, followed by performing paired-end sequencing using the HiSeq X platform. The Kraken2-generated, filtered FASTQ files were assigned to microbial metabolic pathways and functions using HUMAnN 3.04 and the UniRef90 diamond annotated full reference database (version 201901b). Results from HUMAnN for each sample were evaluated for differences among the biological groups using the Kruskal-Wallis non-parametric test with a post hoc Dunn test. RESULTS: We found that a total of 8/11 (72.73%) human subjects were infected with assemblage A (sub-assemblage AII) of G. duodenalis, whereas 3/11 (27.27%) human subjects in the current study were infected with assemblage B of the parasite. We also found that the parasite's genetic diversity was not associated with the clinical outcome of the infection. Further phylogenetic analysis based on the tpi and gdh loci indicated that those clinical isolates belonging to assemblage A of G. duodenalis subjects clustered compactly together in a monophyletic clade despite being isolated from human subjects with asymptomatic and symptomatic human giardiasis. Using a metagenomic shotgun sequencing approach, we observed that infected individuals with asymptomatic and symptomatic giardiasis represented distinctive microbial diversity profiles, and that both were distinguishable from the profiles of healthy volunteers. CONCLUSIONS: These findings identify a potential association between host microbiome disparity with the development of clinical disease during human giardiasis, and may provide insights into the mechanisms by which the parasite induces pathological changes in the gut. These observations may also lead to the development of novel selective therapeutic targets for preventing human enteric microbial infections.


Subject(s)
Giardia lamblia , Giardiasis , Microbiota , Humans , Giardiasis/parasitology , Phylogeny , Genotype , Feces/parasitology , Multilocus Sequence Typing
3.
Pain ; 164(12): 2684-2695, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37278638

ABSTRACT

ABSTRACT: Pain associated with bone cancer remains poorly managed, and chemotherapeutic drugs used to treat cancer usually increase pain. The discovery of dual-acting drugs that reduce cancer and produce analgesia is an optimal approach. The mechanisms underlying bone cancer pain involve interactions between cancer cells and nociceptive neurons. We demonstrated that fibrosarcoma cells express high levels of autotaxin (ATX), the enzyme synthetizing lysophosphatidic acid (LPA). Lysophosphatidic acid increased proliferation of fibrosarcoma cells in vitro. Lysophosphatidic acid is also a pain-signaling molecule, which activates LPA receptors (LPARs) located on nociceptive neurons and satellite cells in dorsal root ganglia. We therefore investigated the contribution of the ATX-LPA-LPAR signaling to pain in a mouse model of bone cancer pain in which fibrosarcoma cells are implanted into and around the calcaneus bone, resulting in tumor growth and hypersensitivity. LPA was elevated in serum of tumor-bearing mice, and blockade of ATX or LPAR reduced tumor-evoked hypersensitivity. Because cancer cell-secreted exosomes contribute to hypersensitivity and ATX is bound to exosomes, we determined the role of exosome-associated ATX-LPA-LPAR signaling in hypersensitivity produced by cancer exosomes. Intraplantar injection of cancer exosomes into naive mice produced hypersensitivity by sensitizing C-fiber nociceptors. Inhibition of ATX or blockade of LPAR attenuated cancer exosome-evoked hypersensitivity in an ATX-LPA-LPAR-dependent manner. Parallel in vitro studies revealed the involvement of ATX-LPA-LPAR signaling in direct sensitization of dorsal root ganglion neurons by cancer exosomes. Thus, our study identified a cancer exosome-mediated pathway, which may represent a therapeutic target for treating tumor growth and pain in patients with bone cancer.


Subject(s)
Bone Neoplasms , Cancer Pain , Exosomes , Fibrosarcoma , Humans , Animals , Mice , Cancer Pain/etiology , Lysophospholipids/metabolism , Bone Neoplasms/complications , Pain/drug therapy , Pain/etiology
4.
Environ Sci Technol ; 57(7): 2758-2767, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36753680

ABSTRACT

Neonicotinoids are neurotoxic insecticides and are often released into nearby wetlands via subsurface tile drains and can negatively impact nontarget organisms, such as amphibians. Previous studies have indicated that imidacloprid, a commonly used neonicotinoid, can cross the amphibian blood-brain barrier under laboratory conditions; however, little is known about the impact of low concentrations in a field-based setting. Here, we report aqueous pesticide concentrations at wetland production areas that were either connected or not connected to agricultural tile drains, quantified imidacloprid and its break down products in juvenile amphibian brains and livers, and investigated the relationship between imidacloprid brain concentration and brain size. Imidacloprid concentrations in brain and water samples were nearly 2.5 and 5 times higher at tile wetlands (brain = 4.12 ± 1.92 pg/mg protein; water = 0.032 ± 0.045 µg/L) compared to reference wetlands, respectively. Tile wetland amphibians also had shorter cerebellums (0.013 ± 0.001 mm), depicting a negative relationship between imidacloprid brain concentration and cerebellum length. The metabolite, desnitro-imidacloprid, had liver concentrations that were 2 times higher at tile wetlands (2 ± 0.3 µg/g). Our results demonstrate that imidacloprid can cross the amphibian blood-brain barrier under ecological conditions and may alter brain dimensions and provide insight into the metabolism of imidacloprid in amphibians.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Rana pipiens , Water Pollutants, Chemical/analysis , Neonicotinoids , Nitro Compounds , Brain , Water
5.
Article in English | MEDLINE | ID: mdl-36632414

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) injure the proximal and distal gut by different mechanisms. While many drugs reduce gastrointestinal injury, no drug directly stimulates mucosal wound healing. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, induces epithelial sheet migration. We synthesized and evaluated a water-soluble FAK-activating small molecule, M64HCl, with drug-like properties. Monolayer wound closure and Western blots measured migration and FAK phosphorylation in Caco-2 â€‹cells, in vitro kinase assays established FAK activation, and pharmacologic tests assessed drug-like properties. 30 â€‹mg/kg/day M64HCl was administered in two murine small intestine injury models for 4 days. M64HCl (0.1-1000 â€‹nM) dose-dependently increased Caco-2 FAK-Tyr 397 phosphorylation, without activating Pyk2 and accelerated Caco-2 monolayer wound closure. M64HCl dose-responsively activates the FAK kinase domain vs. the non-salt M64, increasing the Vmax of ATP-binding. Pharmacologic tests suggested M64HCl has drug-like properties and is enterally absorbed. M64HCl 25 â€‹mg/kg/day continuous infusion promoted healing of ischemic jejunal ulcers and indomethacin-induced small intestinal injury in C57Bl/6 mice. M64HCl-treated mice exhibited smaller ulcers 4 days after ischemic ulcer induction or indomethacin injury. Renal histology and plasma creatinine were normal. Mild hepatic inflammatory changes and ALT elevation were similar among M64HCl-treated mice and controls. M64HCl was concentrated in kidney and gastrointestinal mucosa and functional nephrectomy studies suggested predominantly urinary excretion. Little toxicity was observed in vitro or in single-dose mouse toxicity studies until >1000x higher than effective concentrations. M64HCl, a water-soluble FAK activator, promotes epithelial restitution and intestinal mucosal healing and may be useful to treat gut mucosal injury.

6.
Haematologica ; 108(3): 859-869, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35615929

ABSTRACT

Sickle cell disease (SCD) is the most common inherited disease. Pain is a key morbidity of SCD and opioids are the main treatment but their side effects emphasize the need for new analgesic approaches. Humanized transgenic mouse models have been instructive in understanding the pathobiology of SCD and mechanisms of pain. Homozygous (HbSS) Berkley mice express >99% human sickle hemoglobin and several features of clinical SCD including hyperalgesia. Previously, we reported that the endocannabinoid 2-arachidonoylglycerol (2-AG) is a precursor of the pro-nociceptive mediator prostaglandin E2-glyceryl ester (PGE2-G) which contributes to hyperalgesia in SCD. We now demonstrate the causal role of 2-AG in hyperalgesia in sickle mice. Hyperalgesia in HbSS mice correlated with elevated levels of 2-AG in plasma, its synthesizing enzyme diacylglycerol lipase ß (DAGLß) in blood cells, and with elevated levels of PGE2 and PGE2-G, pronociceptive derivatives of 2-AG. A single intravenous injection of 2-AG produced hyperalgesia in non-hyperalgesic HbSS mice, but not in control (HbAA) mice expressing normal human HbA. JZL184, an inhibitor of 2-AG hydrolysis, also produced hyperalgesia in non-hyperalgesic HbSS or hemizygous (HbAS) mice, but did not influence hyperalgesia in hyperalgesic HbSS mice. Systemic and intraplantar administration of KT109, an inhibitor of DAGLß, decreased mechanical and heat hyperalgesia in HbSS mice. The decrease in hyperalgesia was accompanied by reductions in 2-AG, PGE2 and PGE2-G in the blood. These results indicate that maintaining the physiological level of 2-AG in the blood by targeting DAGLß may be a novel and effective approach to treat pain in SCD.


Subject(s)
Anemia, Sickle Cell , Hyperalgesia , Mice , Humans , Animals , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Dinoprostone , Pain/drug therapy , Pain/etiology , Mice, Transgenic , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Hemoglobin, Sickle
8.
Environ Sci Technol ; 55(14): 9885-9894, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34235932

ABSTRACT

In this study, we investigated thermal decomposition mechanisms of cationic, zwitterionic, and anionic polyfluoroalkyl substances, including those present in aqueous film-forming foam (AFFF) samples. We present novel evidence that polyfluoroalkyl substances gave quantitative yields of perfluoroalkyl substances of different chain lengths during thermal treatment. The results support a radical-mediated transformation mechanism involving random-chain scission and end-chain scission, leading to the formation of perfluoroalkyl carboxylic acids such as perfluorooctanoic acid (PFOA) from certain polyfluoroalkyl amides and sulfonamides. Our results also support a direct thermal decomposition mechanism (chain stripping) on the nonfluorinated moiety of polyfluoroalkyl sulfonamides, resulting in the formation of perfluorooctanesulfonic acid (PFOS) and other structurally related polyfluoroalkyl compounds. Thermal decomposition of 8:2 fluorotelomer sulfonate occurred through end-chain scission and recombination reactions, successively yielding PFOS. All of the studied polyfluoroalkyl substances began to degrade at 200-300 °C, exhibiting near-complete decomposition at ≥400 °C. Using a high-resolution parent ion search method, we demonstrated for the first time that low-temperature thermal treatments of AFFF samples led to the generation of anionic fluoroalkyl substances, including perfluoroheptanesulfonamide, 8:2 fluorotelomer sulfonic acid, N-methyl perfluorooctane sulfonamide, and a previously unreported compound N-2-propenyl-perfluorohexylsulfonamide. This study provides key insights into the fate of polyfluoroalkyl substances in thermal processes.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Carboxylic Acids , Fluorocarbons/analysis , Water , Water Pollutants, Chemical/analysis
9.
Water Res ; 200: 117271, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34082264

ABSTRACT

Thermal treatment is routinely used to reactivate the spent granular activated carbon (GAC) from water purification facilities. It is also an integral part of sewage sludge treatment and municipal solid waste management. This study presents a detailed investigation of the fate of per- and polyfluoroalkyl substances (PFAS) and one PFAS alternative (GenX) in thermal processes, focusing on the effect of GAC. We demonstrate that the thermolysis of perfluoroalkyl carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), and GenX can occur at temperatures of 150‒200 °C. Three temperature zones were discovered for PFOA, including a stable and nonvolatile zone (≤90 °C), a phase-transfer and thermal decomposition zone (90‒400 °C), and a fast decomposition zone (≥400 °C). The thermal decomposition began with the homolysis of a C‒C bond next to the carboxyl group of PFCAs, which formed unstable perfluoroalkyl radicals. Dual decomposition pathways seem to exist. The addition of a highly porous adsorbent, such as GAC or a copolymer resin, compressed the intermediate sublimation zone of PFCAs, changed their thermal decomposition pathways, and increased the decomposition rate constant by up to 150-fold at 250 °C. The results indicate that the observed thermal decomposition acceleration was linked to the adsorption of gas-phase PFCA molecules on GAC. The presence of non-activated charcoals/biochars with a low affinity for PFOA did not accelerate its thermal decomposition, suggesting that the π electron-rich, polyaromatic surface of charcoal/GAC played an insignificant role compared to the adsorbent's porosity. Overall, the results indicate that (1) substantial decomposition of PFCAs and GenX during conventional thermal GAC/sludge/waste treatment is very likely, and (2) the presence or addition of GAC or other highly porous materials can accelerate thermal PFAS decomposition and alter decomposition pathways.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Fluorocarbons/analysis , Porosity , Water Pollutants, Chemical/analysis
10.
J Neurochem ; 158(2): 246-261, 2021 07.
Article in English | MEDLINE | ID: mdl-33389746

ABSTRACT

Although cyclooxygenase (COX) role in cancer angiogenesis has been studied, little is known about its role in brain angioplasticity. In the present study, we chronically infused mice with ketorolac, a non-specific COX inhibitor that does not cross the blood-brain barrier (BBB), under normoxia or 50% isobaric hypoxia (10% O2 by volume). Ketorolac increased mortality rate under hypoxia in a dose-dependent manner. Using in vivo multiphoton microscopy, we demonstrated that chronic COX inhibition completely attenuated brain angiogenic response to hypoxia. Alterations in a number of angiogenic factors that were reported to be COX-dependent in other models were assayed at 24-hr and 10-day hypoxia. Intriguingly, hypoxia-inducible factor 1 was unaffected under COX inhibition, and vascular endothelial growth factor receptor type 2 (VEGFR2) and C-X-C chemokine receptor type 4 (CXCR4) were significantly but slightly decreased. However, a number of mitogen-activated protein kinases (MAPKs) were significantly reduced upon COX inhibition. We conclude that additional, angiogenic factor-independent mechanism might contribute to COX role in brain angioplasticity, probably including mitogenic COX effect on endothelium. Our data indicate that COX activity is critical for systemic adaptation to chronic hypoxia, and BBB COX is essential for hypoxia-induced brain angioplasticity. These data also indicate a potential risk for using COX inhibitors under hypoxia conditions in clinics. Further studies are required to elucidate a complete mechanism for brain long-term angiogenesis regulation through COX activity.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Hypoxia/drug therapy , Hypoxia/mortality , Ketorolac/pharmacology , Animals , Chronic Disease , Dose-Response Relationship, Drug , Endothelium, Vascular/metabolism , Hypoxia-Inducible Factor 1/metabolism , Male , Mice , Mice, Inbred C57BL , Mitogens/pharmacology , Prostaglandins/metabolism , Survival Analysis , Vascular Endothelial Growth Factor Receptor-2/metabolism
11.
Prostaglandins Other Lipid Mediat ; 151: 106479, 2020 12.
Article in English | MEDLINE | ID: mdl-32745525

ABSTRACT

Pain produced by bone cancer is often severe and difficult to treat. Here we examined effects of Resolvin D1 (RvD1) or E1 (RvE1), antinociceptive products of ω-3 polyunsaturated fatty acids, on cancer-induced mechanical allodynia and heat hyperalgesia. Experiments were performed using a mouse model of bone cancer produced by implantation of osteolytic ficrosarcoma into and around the calcaneus bone. Mechanical allodynia and heat hyperalgesia in the tumor-bearing paw were assessed by measuring withdrawal responses to a von Frey monofilament and to radiant heat applied on the plantar hind paw. RvD1, RvE1, and cannabinoid receptor antagonists were injected intrathecally. Spinal content of endocannabinoids was evaluated using UPLC-MS/MS analysis. RvD1 and RvE1 had similar antinociceptive potencies. ED50s for RvD1 and RvE1 in reducing mechanical allodynia were 0.2 pg (0.53 fmol) and 0.6 pg (1.71 fmol), respectively, and were 0.3 pg (0.8 fmol) and 0.2 pg (0.57 fmol) for reducing heat hyperalgesia. Comparisons of dose-response relationships showed equal efficacy for reducing mechanical allodynia, however, efficacy for reducing heat hyperalgesia was greater for of RvD1. Using UPLC-MS/MS we determined that RvD1, but not RvE1, increased levels of the endocannabinoids Anandamide and 2-Arachidonoylglycerol in the spinal cord. Importantly, Resolvins did not alter acute nociception or motor function in naïve mice. Our data indicate, that RvD1 and RvE1 produce potent antiallodynia and antihyperalgesia in a model of bone cancer pain. RvD1 also triggers spinal upregulation of endocannabinoids that produce additional antinociception predominantly through CB2 receptors.


Subject(s)
Bone Neoplasms/complications , Cancer Pain/drug therapy , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Endocannabinoids/metabolism , Hyperalgesia/drug therapy , Signal Transduction/drug effects , Animals , Cancer Pain/pathology , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Hyperalgesia/pathology , Male , Mice
12.
Environ Sci Technol ; 54(12): 7378-7387, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32479721

ABSTRACT

Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are two environmentally persistent per- and polyfluoroalkyl substances (PFAS) that have been detected globally in human tissues and fluids. As part of a project investigating the indirect sources of PFOA/PFOS in the environment and engineered systems, this study is concerned with the mechanisms leading to their in vivo generation in terrestrial invertebrates. We demonstrate here the formation of PFOA and PFOS in earthworms (Lumbricus terrestris) from a group of four zwitterionic/cationic polyfluoroalkyl amides and sulfonamides. In bioaccumulation tests, the zwitterionic PFAS compounds were metabolized within 10 days to PFOA/PFOS at yields of 3.4-20.8 mol % by day 21 and several infrequently reported PFAS species for which chemical structures were determined using high-resolution mass spectrometry. Cationic PFAS, on the other hand, were found to be much less metabolizable in terms of the number (n = 2) and yields (0.9-5.1 mol %) of metabolites. Peak-shaped bioaccumulation profiles were frequently observed for the studied PFAS. Residual zwitterionic/cationic PFAS in earthworms were detected at the end of the elimination phase, indicating that not all zwitterionic/cationic PFAS molecules in vivo are available for enzymatic degradation. Finally, the relative importance of different exposure routes (i.e., waterborne and dietary exposure) was investigated.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Oligochaeta , Animals , Caprylates , Humans
13.
Lipids ; 55(1): 79-85, 2020 01.
Article in English | MEDLINE | ID: mdl-31814137

ABSTRACT

We and others have demonstrated a rapid and dramatic increase in brain prostanoids upon decapitation-induced brain global ischemia and injury. However, the mechanism for this induction, including the cell types involved, are unknown. In the present study, we have validated and applied a pharmacological approach to inhibit prostanoid synthesis in the blood-brain barrier including endothelial cells. Our results indicate that a nonspecific cyclooxygenase (COX) inhibitor, ketorolac, does not pass the blood-brain barrier and does not enter red blood cells but penetrates endothelial cells. Ketorolac treatment did not affect basal prostanoid levels but completely prevented prostanoid induction upon global ischemia. These data indicate that basal prostanoids are synthesized in brain parenchyma cells, while inducible prostanoids are synthesized in the blood-brain barrier, most likely in endothelial cells. However, future studies with cell and COX isoform-specific gene ablation are needed to further validate this conclusion. These findings identify endothelial cells as a possible target for the development of pharmacological approaches to selectively attenuate inducible prostanoid pools without affecting basal levels under brain ischemia, trauma, surgery, and other related conditions.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/drug therapy , Ketorolac/administration & dosage , Prostaglandins/metabolism , Animals , Blood-Brain Barrier/drug effects , Brain Ischemia/etiology , Brain Ischemia/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Erythrocytes , Human Umbilical Vein Endothelial Cells , Humans , Ketorolac/pharmacokinetics , Membrane Proteins/metabolism , Mice
14.
Environ Sci Technol ; 53(20): 11818-11827, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31553179

ABSTRACT

Sorption linearity and reversibility are implicit in models for the fate and transport of per- and polyfluoroalkyl substances (PFAS). In this study, however, we found that the sorption of cationic and zwitterionic PFAS in natural soils was highly nonlinear. The nonlinearity was so severe that it led to a variation in the coefficient of sorption by several orders of magnitude over the experimental concentration range. This implies a considerable increase in sorption as concentration falls in the natural environment. Sorption of cationic PFAS correlated strongly with the soil organic matter (SOM) content and was reversible in all soils. Sorption of zwitterionic PFAS, on the other hand, displayed concentration-dependent hysteresis in soils with a low SOM content. The irreversibility, which was associated with neither SOM, pore deformation, nor surface complexation, was likely caused by the entrapment of molecules in porous structures within inorganic components of soil aggregates. Furthermore, electrostatic interactions with negatively charged soil constituents and the hydrophobic effect were found to be major sorption driving forces for cationic/zwitterionic PFAS at low and high concentrations, respectively. The maximum electrostatic potential of PFAS ions, computed using density functional theory, was found to be a useful predictor of the sorption of ionic PFAS species.


Subject(s)
Soil Pollutants , Soil , Adsorption , Cations , Thermodynamics
15.
Lipids ; 53(6): 641-645, 2018 06.
Article in English | MEDLINE | ID: mdl-30206953

ABSTRACT

Although plasma biomarkers would facilitate rapid and accurate diagnosis of ischemic stroke for immediate treatment, no such biomarkers have been developed to date. In the present study, we tested our hypothesis that plasma unesterified fatty acids (FFA) are altered at early stages of acute ischemic stroke. Plasma was collected from mice 2 h after the permanent middle cerebral artery occlusion (pMCAo) onset, as well as from sham operated and control animals. After 2 h, pMCAo significantly changed the plasma FFA profile with the most dramatic 2- to 3-fold relative increase in very long n-3 and n-6 FFA including 20:4n-6, 22:4n-6, 22:5n-6, and 22:6n-3. Changes in the plasma FFA profile are consistent with FFA liberation from brain phospholipid hydrolyzed under ischemic insult. These results identify, for the first time, the plasma FFA profile as a potential biomarker for an early ischemic stroke within the therapeutic window for thrombolytic treatment. Further studies are required to confirm its specificity and sensitivity in clinical settings.


Subject(s)
Brain Ischemia/blood , Disease Models, Animal , Fatty Acids, Nonesterified/blood , Stroke/blood , Animals , Biomarkers/blood , Male , Mice , Mice, Inbred C57BL
16.
Anal Chim Acta ; 988: 41-49, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28916102

ABSTRACT

Poly- and perfluoroalkyl substances (poly- and per-PFASs) are a large group of organic compounds that have become the target of investigation due to their widespread occurrence in the environment and biota, coupled with their known or suspected impacts on human health. Recent studies have shown that a significant portion of poly-PFASs remain unidentified. This study presents a time-of-flight mass spectrometry approach based on continuously interleaving scans at low and high collision energies (ToF-MSE) for the rapid identification and characterization of unknown PFASs. The MSE mode allowed for the simultaneous acquisition of full-spectrum accurate mass data of both parent and fragment ions in a single chromatographic run. Specific to PFASs, the hypothesis that PFASs can be selectively detected by the ToF-MSE high-resolution parent-ion search (HRPIS) of their characteristic fragments was confirmed with certified standards of 24 poly- and per-PFAS. After being validated with these certified standards, the innovative HRPIS approach was applied to a group of commercial surfactants, which led to the identification of 47 new and 43 infrequently reported PFASs, including 40 non-ionic, 30 cationic, 15 zwitterionic, and five anionic compounds. It is envisaged that the results, especially the identification of new non-ionic PFASs, may provide important insights into the historical occupational and non-occupational exposure to PFASs from the production and application of these surfactants.

17.
Front Neurosci ; 10: 546, 2016.
Article in English | MEDLINE | ID: mdl-27965531

ABSTRACT

Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on [Formula: see text]/NAD+ and [Formula: see text]/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased [Formula: see text]/NAD+ and [Formula: see text]/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke.

18.
Lipids ; 51(4): 487-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27021494

ABSTRACT

The involvement of brain 2-arachidonoylglycerol (2-AG) in a number of critical physiological and pathophysiological regulatory mechanisms highlights the importance for an accurate brain 2-AG determination. In the present study, we validated head-focused microwave irradiation (MW) as a method to prevent postmortem brain 2-AG alterations before analysis. We compared MW to freezing to prevent 2-AG induction and estimated exogenous and endogenous 2-AG stability upon exposure to MW. Using MW, we measured, for the first time, true 2-AG brain levels under basal conditions, 30 s after brain removal from the cranium, and upon exposure to 5 min of brain global ischemia. Our data indicate that brain 2-AG levels are instantaneously and dramatically increased approximately 60-fold upon brain removal from the cranium. With 5 min of brain global ischemia 2-AG levels are also, but less dramatically, increased 3.5-fold. Our data indicate that brain tissue fixation with MW is a required technique to measure both true basal 2-AG levels and 2-AG alterations under different experimental conditions including global ischemia, and 2-AG is stable upon exposure to MW.


Subject(s)
Arachidonic Acids/analysis , Brain Ischemia/metabolism , Brain/radiation effects , Endocannabinoids/analysis , Glycerides/analysis , Tissue Fixation/methods , Animals , Microwaves , Rats , Rats, Sprague-Dawley , Up-Regulation/radiation effects
19.
Lipids ; 51(2): 245-56, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26694606

ABSTRACT

The novel fatty acids (2R,5Z,9Z)-2-methoxy-25-methyl-5,9-hexacosadienoic acid (1a) and (2R,5Z,9Z)-2-methoxy-24-methyl-5,9-hexacosadienoic acid (1b) were isolated in 80 % purity from the Caribbean sponge Asteropus niger by chloroform/methanol extraction followed by solvent partitioning and silica gel column chromatography. The compounds were characterized by utilizing a combination of gas chromatography-mass spectrometry, nuclear magnetic resonance, and circular dichroism. Acids 1a and 1b were not detected in the phospholipids (PtdCho and PtdIns) of the sponge, but rather as free FA and possibly in glycosylceramides. The mixtures of 1a and 1b displayed cytotoxicity towards THP-1 and HepG2 cells with EC50's between 41 and 35 µg/mL. Apoptosis was not the preferred mode of cell death induced by 1a-1b in the THP-1 cells. This implies other types of cytotoxicity mechanisms, such as membrane disruption and/or the inhibition (EC50 = 1.8 µg/mL) of the human topoisomerase IB enzyme (hTopIB), with a mechanism of inhibition different from the one displayed by camptothecin (CPT). In a separate experiment, the mixture of 1a and 1b also displayed cytotoxicity towards ex vivo mouse splenocytes infected with Leishmania infantum amastigotes (IC(50) = 0.17 mg/mL) and free living promastigotes (IC(50) = 0.34 mg/mL). It was also found that the FA were inhibitory of the Leishmania topoisomerase IB (LTopIB) with an EC(50) = 5.1 µg/mL. Taken together, 1a and 1b represent a new class of FA with potential as TopIB inhibitors that preferentially inhibit hTopIB over LTopIB.


Subject(s)
DNA Topoisomerases/biosynthesis , Fatty Acids, Unsaturated/chemistry , Glycosphingolipids/chemistry , Leishmaniasis, Visceral/drug therapy , Porifera/chemistry , Animals , DNA Topoisomerases/chemistry , Fatty Acids, Unsaturated/pharmacology , Gas Chromatography-Mass Spectrometry , Hep G2 Cells , Humans , Leishmania infantum/drug effects , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/parasitology , Magnetic Resonance Spectroscopy , Mice , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology
20.
Lipids ; 49(4): 347-56, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24595512

ABSTRACT

Pressure is an important thermodynamic property of the ocean and the deep biosphere that affects microbial physiology and biochemistry. Here, we report on our investigation of the response of Gram-positive piezotolerant bacterium Sporosarcina sp. DSK25 to hydrostatic pressure. Strain DSK25 responded in an adaptive manner to upshifts of growth pressure and showed systematic changes in phospholipid fatty acids. As the pressure increased from 0.1 to 10 MPa (Megapascal), unsaturated fatty acids in DSK25 increased from 21.7 to 31.1% of total fatty acids, while the level of iso- and anteiso-branched fatty acids remained unchanged. At higher pressures (30, 50, and 60 MPa), the amount of unsaturated fatty acids decreased, and that of anteiso-branched fatty acids increased from 34.4 to 49.9% at the expense of iso-branched fatty acids. For the first time, two polyunsaturated fatty acids (PUFA), 18:2n-6 and 18:2n-x, with the latter having much higher abundance than the former, were identified in DSK25. The concentration of the PUFA increased with growth pressure. These results indicate the involvement of unsaturated and methyl-branched fatty acids in the modulation of bacteria membrane fluidity and function over environmentally relevant parameter (pressure). Piezotolerant bacterium Sporosarcina sp. DSK25 appears to utilize two regulatory mechanisms for adaptation to high pressure, a rapid-responding mechanism on transient scale, expressed as increased biosynthesis of monounsaturated fatty acids, and a long-term adaptation mechanism in increased synthesis of anteiso-branched and polyunsaturated fatty acids. Our results further suggest that Gram-positive piezophilic bacteria respond differently than Gram-negative bacteria in adaptation to high pressure.


Subject(s)
Fatty Acids, Unsaturated/biosynthesis , Gram-Negative Bacteria/metabolism , Sporosarcina/metabolism , Adaptation, Physiological , Cell Membrane/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/physiology , Gram-Negative Bacteria/growth & development , Hydrostatic Pressure , Phospholipids/biosynthesis , Sporosarcina/growth & development , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...