Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Environ Microbiome ; 18(1): 61, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464403

ABSTRACT

BACKGROUND: Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS: Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS: This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.

2.
Microb Biotechnol ; 16(9): 1803-1822, 2023 09.
Article in English | MEDLINE | ID: mdl-37317055

ABSTRACT

Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon 'Candidatus Nanohalobium constans'. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea-host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.


Subject(s)
Haloferax , Xylans , Ecosystem
3.
Appl Environ Microbiol ; 89(2): e0170422, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36719236

ABSTRACT

Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/ß-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal ß-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.


Subject(s)
Carboxylic Ester Hydrolases , Hydrothermal Vents , Carboxylic Ester Hydrolases/metabolism , Polymers , Hydrolases/metabolism , Polyesters , Plastics , Substrate Specificity
4.
Microorganisms ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36144296

ABSTRACT

The Parys Mountain copper mine (Wales, UK) contains a wide range of discrete environmental microniches with various physicochemical conditions that shape microbial community composition. Our aim was to assess the microbial community in the sediments and overlying water column in an acidic mine drainage (AMD) site containing abundant filamentous biogenic growth via application of a combination of chemical analysis and taxonomic profiling using 16S rRNA gene amplicon sequencing. Our results were then compared to previously studied sites at Parys Mt. Overall, the sediment microbiome showed a dominance of bacteria over archaea, particularly those belonging to Proteobacteria (genera Acidiphilium and Acidisphaera), Acidobacteriota (subgroup 1), Chloroflexota (AD3 cluster), Nitrospirota (Leptospirillum) and the uncultured Planctomycetota/CPIa-3 termite group. Archaea were only present in the sediment in small quantities, being represented by the Terrestrial Miscellaneous Euryarchaeota Group (TMEG), Thermoplasmatales and Ca. Micrarchaeota (Ca. Micracaldota). Bacteria, mostly of the genera Acidiphilium and Leptospirillum, also dominated within the filamentous streamers while archaea were largely absent. This study found pH and dissolved solutes to be the most important parameters correlating with relative proportions of bacteria to archaea in an AMD environment and revealed the abundance patterns of native acidophilic prokaryotes inhabiting Parys Mt sites and their niche specificities.

5.
Front Microbiol ; 13: 868839, 2022.
Article in English | MEDLINE | ID: mdl-35663881

ABSTRACT

Acid mine drainage (AMD) systems are extremely acidic and are metal-rich formations inhabited by relatively low-complexity communities of acidophiles whose enzymes remain mostly uncharacterized. Indeed, enzymes from only a few AMD sites have been studied. The low number of available cultured representatives and genome sequences of acidophiles inhabiting AMDs makes it difficult to assess the potential of these environments for enzyme bioprospecting. In this study, using naïve and in silico metagenomic approaches, we retrieved 16 esterases from the α/ß-hydrolase fold superfamily with the closest match from uncultured acidophilic Acidobacteria, Actinobacteria (Acidithrix, Acidimicrobium, and Ferrimicrobium), Acidiphilium, and other Proteobacteria inhabiting the Los Rueldos site, which is a unique AMD formation in northwestern Spain with a pH of ∼2. Within this set, only two polypeptides showed high homology (99.4%), while for the rest, the pairwise identities ranged between 4 and 44.9%, suggesting that the diversity of active polypeptides was dominated not by a particular type of protein or highly similar clusters of proteins, but by diverse non-redundant sequences. The enzymes exhibited amino acid sequence identities ranging from 39 to 99% relative to homologous proteins in public databases, including those from other AMDs, thus indicating the potential novelty of proteins associated with a specialized acidophilic community. Ten of the 16 hydrolases were successfully expressed in Escherichia coli. The pH for optimal activity ranged from 7.0 to 9.0, with the enzymes retaining 33-68% of their activities at pH 5.5, which was consistent with the relative frequencies of acid residues (from 54 to 67%). The enzymes were the most active at 30-65°C, retaining 20-61% of their activity under the thermal conditions characterizing Los Rueldos (13.8 ± 0.6°C). The analysis of the substrate specificity revealed the capacity of six hydrolases to efficiently degrade (up to 1,652 ± 75 U/g at pH 8.0 and 30°C) acrylic- and terephthalic-like [including bis(2-hydroxyethyl)-terephthalate, BHET] esters, and these enzymes could potentially be of use for developing plastic degradation strategies yet to be explored. Our assessment uncovers the novelty and potential biotechnological interest of enzymes present in the microbial populations that inhibit the Los Rueldos AMD system.

7.
FEMS Microbiol Ecol ; 97(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33264383

ABSTRACT

Filterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-day lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed that COGs associated with energy production increased in number in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within a short residence time of lotic freshwater systems.


Subject(s)
Microbiota , Organic Chemicals , Carbon , Fresh Water , RNA, Ribosomal, 16S/genetics , Rivers
8.
Front Microbiol ; 11: 576520, 2020.
Article in English | MEDLINE | ID: mdl-33329440

ABSTRACT

Parys Mountain or Mynydd Parys (Isle of Anglesey, United Kingdom) is a mine-impacted environment, which accommodates a variety of acidophilic organisms. Our previous research of water and sediments from one of the surface acidic streams showed a high proportion of archaea in the total microbial community. To understand the spatial distribution of archaea, we sampled cores (0-20 cm) of sediment and conducted chemical analyses and taxonomic profiling of microbiomes using 16S rRNA gene amplicon sequencing in different core layers. The taxonomic affiliation of sequencing reads indicated that archaea represented between 6.2 and 54% of the microbial community at all sediment depths. Majority of archaea were associated with the order Thermoplasmatales, with the most abundant group of sequences being clustered closely with the phylotype B_DKE, followed by "E-plasma," "A-plasma," other yet uncultured Thermoplasmatales with Ferroplasma and Cuniculiplasma spp. represented in minor proportions. Thermoplasmatales were found at all depths and in the whole range of chemical conditions with their abundance correlating with sediment Fe, As, Cr, and Mn contents. The bacterial microbiome component was largely composed in all layers of sediment by members of the phyla Proteobacteria, Actinobacteria, Nitrospirae, Firmicutes, uncultured Chloroflexi (AD3 group), and Acidobacteria. This study has revealed a high abundance of Thermoplasmatales in acid mine drainage-affected sediment layers and pointed at these organisms being the main contributors to carbon, and probably to iron and sulfur cycles in this ecosystem.

9.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32759215

ABSTRACT

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Subject(s)
Halobacteriaceae/physiology , Nanoarchaeota/physiology , Polysaccharides/metabolism , Symbiosis/physiology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Coculture Techniques , Gene Expression Regulation, Archaeal , Genome, Archaeal , Genomics , Phylogeny
10.
Microorganisms ; 8(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438588

ABSTRACT

The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation. The highest increase in expression appeared in low-abundance (0.001-0.005 fmol%) proteins for polypeptides' hydrolysis (metal-dependent hydrolase), oxidation of amino acids (FAD-dependent oxidoreductase), pyrimidine biosynthesis (aspartate carbamoyltransferase regulatory chain proteins), citrate cycle (2-oxoacid ferredoxin oxidoreductase) and ATP production (V type ATP synthase). Importantly, the cold shock induced a substantial increase (6% and 9%) in expression of the most-abundant proteins, thermosome beta subunit and glutamate dehydrogenase. This study has outlined potential mechanisms of environmental fitness of Cuniculiplasma spp. allowing them to colonise acidic settings at low/moderate temperatures.

11.
Front Microbiol ; 10: 1573, 2019.
Article in English | MEDLINE | ID: mdl-31379766

ABSTRACT

Acid mine drainage (AMD) systems are globally widespread and are an important source of metal pollution in riverine and coastal systems. Microbial AMD communities have been extensively studied for their ability to thrive under extremely acidic conditions and for their immense contribution to the dissolution of metal ores. However, little is known on microbial inhabitants of AMD systems subjected to extremely contrasting continental seasonal temperature patterns as opposed to maritime climate zones, experiencing much weaker annual temperature variations. Here, we investigated three types of AMD sites in Eastern Transbaikalia (Russia). In this region, all surface water bodies undergo a deep and long (up to 6 months) freezing, with seasonal temperatures varying between -33 and +24°C, which starkly contrasts the common well-studied AMD environments. We sampled acidic pit lake (Sherlovaya Gora site) located in the area of a polymetallic deposit, acidic drainage water from Bugdaya gold-molybdenum-tungsten deposit and Ulan-Bulak natural acidic spring. These systems showed the abundance of bacteria-derived reads mostly affiliated with Actinobacteria, Acidobacteria, Alpha- and Gammaproteobacteria, chloroplasts, Chloroflexi, Bacteroidetes, and Firmicutes. Furthermore, candidate taxa "Ca. Saccharibacteria" (previously known as TM7), "Ca. Parcubacteria" (OD1) and WPS-2 were represented in substantial quantities (10-20%). Heterotrophy and iron redox cycling can be considered as central processes of carbon and energy flow for majority of detected bacterial taxa. Archaea were detected in low numbers, with Terrestrial Miscellaneous Euryarchaeal Group (TMEG), to be most abundant (3%) in acidic spring Ulan-Bulak. Composition of these communities was found to be typical in comparison to other AMD sites; however, certain groups (as Ignavibacteriae) could be specifically associated with this area. This study provides insight into the microbial diversity patterns in acidic ecosystems formed in areas of polymetallic deposits in extreme continental climate zone with contrasting temperature parameters.

12.
Genes (Basel) ; 10(6)2019 06 15.
Article in English | MEDLINE | ID: mdl-31208064

ABSTRACT

"Candidatus Micrarchaeota" are widely distributed in acidic environments; however, their cultivability and our understanding of their interactions with potential hosts are very limited. Their habitats were so far attributed with acidic sites, soils, peats, freshwater systems, and hypersaline mats. Using cultivation and culture-independent approaches (16S rRNA gene clonal libraries, high-throughput amplicon sequencing of V3-V4 region of 16S rRNA genes), we surveyed the occurrence of these archaea in geothermal areas on Kamchatka Peninsula and Kunashir Island and assessed their taxonomic diversity in relation with another type of low-pH environment, acid mine drainage stream (Wales, UK). We detected "Ca. Micrarchaeota" in thermophilic heterotrophic enrichment cultures of Kunashir and Kamchatka that appeared as two different phylotypes, namely "Ca. Mancarchaeum acidiphilum"-, and ARMAN-2-related, alongside their potential hosts, Cuniculiplasma spp. and other Thermoplasmatales archaea without defined taxonomic position. These clusters of "Ca. Micrarchaeota" together with three other groups were also present in mesophilic acid mine drainage community. Present work expands our knowledge on the diversity of "Ca. Micrarchaeota" in thermophilic and mesophilic acidic environments, suggests cultivability patterns of acidophilic archaea and establishes potential links between low-abundance species of thermophilic "Ca. Micrarchaeota" and certain Thermoplasmatales, such as Cuniculiplasma spp. in situ.


Subject(s)
Acids/chemistry , Archaea/genetics , Soil Microbiology , Thermoplasmales/genetics , Archaea/chemistry , Archaea/classification , Ecosystem , Fresh Water/microbiology , Genome, Archaeal/genetics , Hot Springs , Phylogeny , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , Soil/chemistry , Thermoplasmales/chemistry , Wales
13.
Microbiome ; 7(1): 11, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30691532

ABSTRACT

BACKGROUND: The current view suggests that in low-temperature acidic environments, archaea are significantly less abundant than bacteria. Thus, this study of the microbiome of Parys Mountain (Anglesey, UK) sheds light on the generality of this current assumption. Parys Mountain is a historically important copper mine and its acid mine drainage (AMD) water streams are characterised by constant moderate temperatures (8-18 °C), extremely low pH (1.7) and high concentrations of soluble iron and other metal cations. RESULTS: Metagenomic and SSU rRNA amplicon sequencing of DNA from Parys Mountain revealed a significant proportion of archaea affiliated with Euryarchaeota, which accounted for ca. 67% of the community. Within this phylum, potentially new clades of Thermoplasmata were overrepresented (58%), with the most predominant group being "E-plasma", alongside low-abundant Cuniculiplasmataceae, 'Ca. Micrarchaeota' and 'Terrestrial Miscellaneous Euryarchaeal Group' (TMEG) archaea, which were phylogenetically close to Methanomassilicoccales and clustered with counterparts from acidic/moderately acidic settings. In the sediment, archaea and Thermoplasmata contributed the highest numbers in V3-V4 amplicon reads, in contrast with the water body community, where Proteobacteria, Nitrospirae, Acidobacteria and Actinobacteria outnumbered archaea. Cultivation efforts revealed the abundance of archaeal sequences closely related to Cuniculiplasma divulgatum in an enrichment culture established from the filterable fraction of the water sample. Enrichment cultures with unfiltered samples showed the presence of Ferrimicrobium acidiphilum, C. divulgatum, 'Ca. Mancarchaeum acidiphilum Mia14', 'Ca. Micrarchaeota'-related and diverse minor (< 2%) bacterial metagenomic reads. CONCLUSION: Contrary to expectation, our study showed a high abundance of archaea in this extremely acidic mine-impacted environment. Further, archaeal populations were dominated by one particular group, suggesting that they are functionally important. The prevalence of archaea over bacteria in these microbiomes and their spatial distribution patterns represents a novel and important advance in our understanding of acidophile ecology. We also demonstrated a procedure for the specific enrichment of cell wall-deficient members of the archaeal component of this community, although the large fraction of archaeal taxa remained unculturable. Lastly, we identified a separate clustering of globally occurring acidophilic members of TMEG that collectively belong to a distinct order within Thermoplasmata with yet unclear functional roles in the ecosystem.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bacteria/isolation & purification , Geologic Sediments/microbiology , Acids/metabolism , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Cold Temperature , Ecosystem , Metagenome/genetics , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Wales
14.
Extremophiles ; 23(1): 1-7, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30499003

ABSTRACT

Recently, the order Thermoplasmatales was expanded through the cultivation and description of species Cuniculiplasma divulgatum and corresponding family Cuniculiplasmataceae. Initially isolated from acidic streamers, signatures of these archaea were ubiquitously found in various low-pH settings. Eight genomes with various levels of completeness are currently available, all of which exhibit very high sequence identities and genomic conservation. Co-existence of Cuniculiplasmataceae with archaeal Richmond Mine acidophilic nanoorganisms ('ARMAN')-related archaea representing an intriguing group within the "microbial dark matter" suggests their common fundamental environmental strategy and metabolic networking. The specific case of "Candidatus Mancarchaeum acidiphilum" Mia14 phylogenetically affiliated with "Ca. Micrarchaeota" from the superphylum "Ca. Diapherotrites" along with the presence of other representatives of 'DPANN' with significantly reduced genomes points at a high probability of close interactions between the latter and various Thermoplasmatales abundant in situ. This review critically assesses our knowledge on specific functional role and potential of the members of Cuniculiplasmataceae abundant in acidophilic microbiomes through the analysis of distribution, physiological and genomic patterns, and their interactions with 'ARMAN'-related archaea.


Subject(s)
Genome, Archaeal , Phylogeny , Thermoplasmales/genetics , Metabolome , Thermoplasmales/classification , Thermoplasmales/metabolism
15.
Appl Environ Microbiol ; 85(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30413473

ABSTRACT

Amination of bulky ketones, particularly in (R) configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent (S) selectivity. We also report representatives from the class III ω-TAs capable of converting (R) and (S) amines and bulky ketones and one that can convert amines with longer alkyl substituents. The preference for bulky ketones was associated with the presence of a hairpin region proximal to the conserved Arg414 and residues conforming and close to it. The outward orientation of Arg414 additionally favored the conversion of (R) amines. This configuration was also found to favor the utilization of putrescine as an amine donor, so that class III ω-TAs with Arg414 in outward orientation may participate in vivo in the catabolism of putrescine. The positioning of the conserved Ser231 also contributes to the preference for amines with longer alkyl substituents. Optimal temperatures for activity ranged from 45 to 65°C, and a few enzymes retained ≥50% of their activity in water-soluble solvents (up to 50% [vol/vol]). Hence, our results will pave the way to design, in the future, new class III ω-TAs converting bulky ketones and (R) amines for the production of high-value products and to screen for those converting putrescine.IMPORTANCE Amine transaminases of the class III ω-TAs are key enzymes for modification of chemical building blocks, but finding those capable of converting bulky ketones and (R) amines is still challenging. Here, by an extensive analysis of the substrate spectra of 10 class III ω-TAs, we identified a number of residues playing a role in determining the access and positioning of bulky ketones, bulky amines, and (R)- and (S) amines, as well as of environmentally relevant polyamines, particularly putrescine. The results presented can significantly expand future opportunities for designing (R)-specific class III ω-TAs to convert valuable bulky ketones and amines, as well as for deepening the knowledge into the polyamine catabolic pathways.


Subject(s)
Bacterial Proteins/genetics , Bioprospecting , Genes, Bacterial , Ketones/metabolism , Polyamines/metabolism , Pseudomonas oleovorans/genetics , Transaminases/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Pseudomonas oleovorans/enzymology , Pseudomonas oleovorans/metabolism , Sequence Alignment , Transaminases/metabolism
16.
FEMS Microbiol Lett ; 366(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30534987

ABSTRACT

A global census of marine microbial life has been underway over the past several decades. During this period, there have been scientific breakthroughs in estimating microbial diversity and understanding microbial functioning and ecology. It is estimated that the ocean, covering 71% of the earth's surface with its estimated volume of about 2 × 1018 m3 and an average depth of 3800 m, hosts the largest population of microbes on Earth. More than 2 million eukaryotic and prokaryotic species are thought to thrive both in the ocean and on its surface. Prokaryotic cell abundances can reach densities of up to 1012 cells per millilitre, exceeding eukaryotic densities of around 106 cells per millilitre of seawater. Besides their large numbers and abundance, marine microbial assemblages and their organic catalysts (enzymes) have a largely underestimated value for their use in the development of industrial products and processes. In this perspective article, we identified critical gaps in knowledge and technology to fast-track this development. We provided a general overview of the presumptive microbial assemblages in oceans, and an estimation of what is known and the enzymes that have been currently retrieved. We also discussed recent advances made in this area by the collaborative European Horizon 2020 project 'INMARE'.


Subject(s)
Aquatic Organisms/enzymology , Oceans and Seas , Water Microbiology , Bacteria/enzymology , Biodiversity
17.
Environ Sci Technol ; 52(21): 12388-12401, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30284819

ABSTRACT

The continuous growth of global plastics production, including polyesters, has resulted in increasing plastic pollution and subsequent negative environmental impacts. Therefore, enzyme-catalyzed depolymerization of synthetic polyesters as a plastics recycling approach has become a focus of research. In this study, we screened over 200 purified uncharacterized hydrolases from environmental metagenomes and sequenced microbial genomes and identified at least 10 proteins with high hydrolytic activity against synthetic polyesters. These include the metagenomic esterases MGS0156 and GEN0105, which hydrolyzed polylactic acid (PLA), polycaprolactone, as well as bis(benzoyloxyethyl)-terephthalate. With solid PLA as a substrate, both enzymes produced a mixture of lactic acid monomers, dimers, and higher oligomers as products. The crystal structure of MGS0156 was determined at 1.95 Å resolution and revealed a modified α/ß hydrolase fold, with a lid domain and highly hydrophobic active site. Mutational studies of MGS0156 identified the residues critical for hydrolytic activity against both polyester and monoester substrates, with two-times higher polyesterase activity in the MGS0156 L169A mutant protein. Thus, our work identified novel, highly active polyesterases in environmental metagenomes and provided molecular insights into their activity, thereby augmenting our understanding of enzymatic polyester hydrolysis.


Subject(s)
Metagenome , Polyesters , Esterases , Hydrolases , Hydrolysis
18.
Front Microbiol ; 9: 1971, 2018.
Article in English | MEDLINE | ID: mdl-30186275

ABSTRACT

Nano-sized and filterable microorganisms are thought to represent the smallest living organisms on earth and are characterized by their small size (50-400 nm) and their ability to physically pass through <0.45 µm pore size filters. They appear to be ubiquitous in the biosphere and are present at high abundance across a diverse range of habitats including oceans, rivers, soils, and subterranean bedrock. Small-sized organisms are detected by culture-independent and culture-dependent approaches, with most remaining uncultured and uncharacterized at both metabolic and taxonomic levels. Consequently, their significance in ecological roles remain largely unknown. Successful isolation, however, has been achieved for some species (e.g., Nanoarchaeum equitans and "Candidatus Pelagibacter ubique"). In many instances, small-sized organisms exhibit a significant genome reduction and loss of essential metabolic pathways required for a free-living lifestyle, making their survival reliant on other microbial community members. In these cases, the nano-sized prokaryotes can only be co-cultured with their 'hosts.' This paper analyses the recent data on small-sized microorganisms in the context of their taxonomic diversity and potential functions in the environment.

19.
ACS Chem Biol ; 13(1): 225-234, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29182315

ABSTRACT

Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here, we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps rank (classify) the promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence data sets.


Subject(s)
Esterases/chemistry , Esterases/metabolism , Phylogeny , Catalytic Domain , Substrate Specificity
20.
Article in English | MEDLINE | ID: mdl-29214045

ABSTRACT

Antimicrobial peptides (AMPs) are promising drug candidates to target multi-drug resistant bacteria. The rumen microbiome presents an underexplored resource for the discovery of novel microbial enzymes and metabolites, including AMPs. Using functional screening and computational approaches, we identified 181 potentially novel AMPs from a rumen bacterial metagenome. Here, we show that three of the selected AMPs (Lynronne-1, Lynronne-2 and Lynronne-3) were effective against numerous bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). No decrease in MRSA susceptibility was observed after 25 days of sub-lethal exposure to these AMPs. The AMPs bound preferentially to bacterial membrane lipids and induced membrane permeability leading to cytoplasmic leakage. Topical administration of Lynronne-1 (10% w/v) to a mouse model of MRSA wound infection elicited a significant reduction in bacterial counts, which was comparable to treatment with 2% mupirocin ointment. Our findings indicate that the rumen microbiome may provide viable alternative antimicrobials for future therapeutic application.

SELECTION OF CITATIONS
SEARCH DETAIL
...