Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Astron Astrophys ; 6302019 Oct.
Article in English | MEDLINE | ID: mdl-32699429

ABSTRACT

CONTEXT: Pre-equinox measurements of comet 67P/Churyumov-Gerasimenko with the mass spectrometer ROSINA/DFMS on board the Rosetta spacecraft revealed a strongly heterogeneous coma. The abundances of major and various minor volatile species were found to depend on the latitude and longitude of the nadir point of the spacecraft. The observed time variability of coma species remained consistent for about three months up to equinox. The chemical variability could be generally interpreted in terms of surface temperature and seasonal effects superposed on some kind of chemical heterogeneity of the nucleus. AIMS: We compare here pre-equinox (inbound) ROSINA/DFMS measurements from 2014 to measurements taken after the outbound equinox in 2016, both at heliocentric distances larger than 3 AU. For a direct comparison we limit our observations to the southern hemisphere. METHODS: We report the similarities and differences in the concentrations and time variability of neutral species under similar insolation conditions (heliocentric distance and season) pre- and post-equinox, and interpret them in light of the previously published observations. In addition, we extend both the pre- and post-equinox analysis by comparing species concentrations with a mixture of CO2 and H2O. RESULTS: Our results show significant changes in the abundances of neutral species in the coma from pre- to post-equinox that are indicative of seasonally driven nucleus heterogeneity. CONCLUSIONS: The observed pre- and post-equinox patterns can generally be explained by the strong erosion in the southern hemisphere that moves volatile-rich layers near the surface.

3.
Science ; 356(6342): 1069-1072, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28596364

ABSTRACT

The origin of cometary matter and the potential contribution of comets to inner-planet atmospheres are long-standing problems. During a series of dedicated low-altitude orbits, the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) on the Rosetta spacecraft analyzed the isotopes of xenon in the coma of comet 67P/Churyumov-Gerasimenko. The xenon isotopic composition shows deficits in heavy xenon isotopes and matches that of a primordial atmospheric component. The present-day Earth atmosphere contains 22 ± 5% cometary xenon, in addition to chondritic (or solar) xenon.

4.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Article in English | MEDLINE | ID: mdl-28554973

ABSTRACT

The European Rosetta mission has been following comet 67P/Churyumov-Gerasimenko for 2 years, studying the nucleus and coma in great detail. For most of these 2 years the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) has analysed the volatile part of the coma. With its high mass resolution and sensitivity it was able to not only detect deuterated water HDO, but also doubly deuterated water, D2O and deuterated hydrogen sulfide HDS. The ratios for [HDO]/[H2O], [D2O]/[HDO] and [HDS]/[H2S] derived from our measurements are (1.05 ± 0.14) × 10-3, (1.80 ± 0.9) × 10-2 and (1.2 ± 0.3) × 10-3, respectively. These results yield a very high ratio of 17 for [D2O]/[HDO] relative to [HDO]/[H2O]. Statistically one would expect just 1/4. Such a high value can be explained by cometary water coming unprocessed from the presolar cloud, where water is formed on grains, leading to high deuterium fractionation. The high [HDS]/[H2S] ratio is compatible with upper limits determined in low-mass star-forming regions and also points to a direct correlation of cometary H2S with presolar grain surface chemistry.This article is part of the themed issue 'Cometary science after Rosetta'.

5.
J Geophys Res Space Phys ; 121(1): 804-816, 2016 01.
Article in English | MEDLINE | ID: mdl-27134807

ABSTRACT

Observations of the green and red-doublet emission lines have previously been realized for several comets. We present here a chemistry-emission coupled model to study the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines of interest for comet 67P/Churyumov-Gerasimenko. The recent discovery of O2 in significant abundance relative to water 3.80 ± 0.85% within the coma of 67P has been taken into consideration for the first time in such models. We evaluate the effect of the presence of O2 on the green to red-doublet emission intensity ratio, which is traditionally used to assess the CO2 abundance within cometary atmospheres. Model simulations, solving the continuity equation with transport, show that not taking O2 into account leads to an underestimation of the CO2 abundance within 67P, with a relative error of about 25%. This strongly suggests that the green to red-doublet emission intensity ratio alone is not a proper tool for determining the CO2 abundance, as previously suggested. Indeed, there is no compelling reason why O2 would not be a common cometary volatile, making revision of earlier assessments regarding the CO2 abundance in cometary atmospheres necessary. The large uncertainties of the CO2 photodissociation cross section imply that more studies are required in order to better constrain the O(1S) and O(1D) production through this mechanism. Space weather phenomena, such as powerful solar flares, could be used as tools for doing so, providing additional information on a good estimation of the O2 abundance within cometary atmospheres.

6.
Nature ; 526(7575): 678-81, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26511578

ABSTRACT

The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.


Subject(s)
Meteoroids , Oxygen/analysis , Carbon Monoxide/analysis , Extraterrestrial Environment/chemistry , Ice/analysis , Nitrogen/analysis , Oxygen/radiation effects , Photolysis , Solar System/chemistry , Spacecraft , Water/analysis
7.
Science ; 348(6231): 232-5, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25791084

ABSTRACT

Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of (5.70 ± 0.66) × 10(-3) (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.

8.
Science ; 347(6220): aaa0276, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25613892

ABSTRACT

Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.

9.
Science ; 347(6220): 1261952, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25501976

ABSTRACT

The provenance of water and organic compounds on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the deuterium-to-hydrogen (D/H) ratios in the reservoirs for comets and Earth's oceans. Here, we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency's Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10(-4)­that is, approximately three times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean-like water.

10.
Nature ; 462(7276): 1036-8, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20033043

ABSTRACT

Magnetic fields play an important (sometimes dominant) role in the evolution of gas clouds in the Galaxy, but the strength and orientation of the field in the interstellar medium near the heliosphere has been poorly constrained. Previous estimates of the field strength range from 1.8-2.5 microG and the field was thought to be parallel to the Galactic plane or inclined by 38-60 degrees (ref. 2) or 60-90 degrees (ref. 3) to this plane. These estimates relied either on indirect observational inferences or modelling in which the interstellar neutral hydrogen was not taken into account. Here we report measurements of the deflection of the solar wind plasma flows in the heliosheath to determine the magnetic field strength and orientation in the interstellar medium. We find that the field strength in the local interstellar medium is 3.7-5.5 microG. The field is tilted approximately 20-30 degrees from the interstellar medium flow direction (resulting from the peculiar motion of the Sun in the Galaxy) and is at an angle of about 30 degrees from the Galactic plane. We conclude that the interstellar medium field is turbulent or has a distortion in the solar vicinity.

11.
Science ; 316(5826): 875-8, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17495167

ABSTRACT

The orientation of the local interstellar magnetic field introduces asymmetries in the heliosphere that affect the location of heliospheric radio emissions and the streaming direction of ions from the termination shock of the solar wind. We combined observations of radio emissions and energetic particle streaming with extensive three-dimensional magnetohydrodynamic computer simulations of magnetic field draping over the heliopause to show that the plane of the local interstellar field is approximately 60 degrees to 90 degrees from the galactic plane. This finding suggests that the field orientation in the Local Interstellar Cloud differs from that of a larger-scale interstellar magnetic field thought to parallel the galactic plane.

12.
Science ; 276(5314): 939-42, 1997 May 09.
Article in English | MEDLINE | ID: mdl-9139655

ABSTRACT

X-ray emission was discovered in comet Hyakutake (C/1996 B2) by the Röntgen satellite in 1996, and these emissions were attributed to the excitation of high charge state solar wind ions due to electron capture from cometary molecules or atoms. Using the plasma flow in the coma of Hyakutake calculated by a three-dimensional adaptive magnetohydrodynamic model, the density distribution of solar wind ions in the coma and the resulting x-ray emission were computed. The calculated High Resolution Imager count rate of 4.4 per second and the spatial distribution of the x-ray emission agree with the observations. A detailed energy spectrum of cometary x-rays is predicted in the 80 to 2000 electronvolt energy range. Cometary x-rays present a sensitive tool to monitor cometary activity and solar wind ion composition.


Subject(s)
Computer Simulation , Ions , Meteoroids , X-Rays , Carbon , Extraterrestrial Environment , Hydrogen , Neon , Oxygen
13.
Science ; 205(4401): 99-102, 1979 Jul 06.
Article in English | MEDLINE | ID: mdl-17778916

ABSTRACT

Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.

SELECTION OF CITATIONS
SEARCH DETAIL