Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters











Publication year range
1.
Methods Mol Biol ; 2814: 247-255, 2024.
Article in English | MEDLINE | ID: mdl-38954210

ABSTRACT

The large-scale proteomic analysis of Dictyostelium discoideum has contributed to our understanding of intracellular as well as secreted proteins in this versatile model eukaryote. Mass spectrometry-based proteomic analysis is a robust, sensitive, and rapid analytical method for identification and characterization of proteins extracted from tissues, cells, cell fractions, or pull-down assays. The availability of core facilities which make proteomics inexpensive and easy to do has facilitated a wide range of research projects. In this chapter, we present a simple standard methodology to extract proteins and prepare samples from D. discoideum for mass spectrometry and methods to analyze the identified proteins.


Subject(s)
Dictyostelium , Mass Spectrometry , Proteomics , Protozoan Proteins , Dictyostelium/metabolism , Proteomics/methods , Mass Spectrometry/methods , Protozoan Proteins/analysis , Protozoan Proteins/metabolism , Proteome/analysis
2.
J Cell Sci ; 137(15)2024 08 01.
Article in English | MEDLINE | ID: mdl-38940195

ABSTRACT

Little is known about eukaryotic chemorepulsion. The enzymes phosphatase and tensin homolog (PTEN) and CnrN dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Dictyostelium discoideum cells require both PTEN and CnrN to induce chemorepulsion of cells away from the secreted chemorepellent protein AprA. How D. discoideum cells utilize two proteins with redundant phosphatase activities in response to AprA is unclear. Here, we show that D. discoideum cells require both PTEN and CnrN to locally inhibit Ras activation, decrease basal levels of PI(3,4,5)P3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P2 levels, decrease PI(3,4,5)P3 levels, inhibit proliferation, decrease myosin II phosphorylation and increase filopod sizes. PTEN, but not CnrN, decreases basal levels of PI(4,5)P2, and AprA requires PTEN, but not CnrN, to induce cell roundness. Together, our results suggest that CnrN and PTEN play unique roles in AprA-induced chemorepulsion.


Subject(s)
Dictyostelium , PTEN Phosphohydrolase , Phosphatidylinositol Phosphates , Protozoan Proteins , Dictyostelium/metabolism , Dictyostelium/genetics , Dictyostelium/enzymology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Chemotaxis , Signal Transduction , ras Proteins/metabolism
3.
Res Sq ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38746380

ABSTRACT

Background: Human males and females show differences in the incidence of neutrophil-associated diseases such as systemic lupus erythematosus, rheumatoid arthritis, and reactive arthritis, and differences in neutrophil physiological responses such as a faster response to the chemorepellent SLIGKV. Little is known about the basis of sex-based differences in human neutrophils. Methods: Starting with human neutrophils from healthy donors, we used RNA-seq to examine total mRNA profiles, mRNAs not associated with ribosomes and thus not being translated, mRNAs in monosomes, and mRNAs in polysomes and thus heavily translated. We used mass spectrometry systems to identify proteins and phosphoproteins. Results: There were sex-based differences in the translation of 24 mRNAs. There were 132 proteins with higher levels in male neutrophils; these tended to be associated with RNA regulation, ribosome, and phosphoinositide signaling pathways, whereas 30 proteins with higher levels in female neutrophils were associated with metabolic processes, proteosomes, and phosphatase regulatory proteins. Male neutrophils had increased phosphorylation of 32 proteins. After exposure to SLIGKV, male neutrophils showed a faster response in terms of protein phosphorylation compared to female neutrophils. Conclusions: Male neutrophils have higher levels of proteins and higher phosphorylation of proteins associated with RNA processing and signaling pathways, while female neutrophils have higher levels of proteins associated with metabolism and proteolytic pathways. This suggests that male neutrophils might be more ready to adapt to a new environment, and female neutrophils might be more effective at responding to pathogens. This may contribute to the observed sex-based differences in neutrophil behavior and neutrophil-associated disease incidence and severity.

4.
Front Microbiol ; 15: 1369763, 2024.
Article in English | MEDLINE | ID: mdl-38690363

ABSTRACT

Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug tolerance. Increased intracellular polyphosphate (polyP) in Mtb enhances tolerance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.

5.
bioRxiv ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38464111

ABSTRACT

The directed movement of eukaryotic cells is crucial for processes such as embryogenesis and immune cell trafficking. The enzyme Phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P 3 ] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P 2 ]. Dictyostelium discoideum cells require both PTEN and the PTEN-like phosphatase CnrN to locally inhibit Ras activation to induce biased movement of cells away from the secreted chemorepellent protein AprA. Both PTEN and CnrN decrease basal levels of PI(3,4,5)P 3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P 2 levels, decrease PI(3,4,5)P 3 levels, inhibit proliferation, decrease myosin II phosphorylation, and increase filopod sizes. AprA causes PTEN, similar to CnrN, to localize to the side of the cell towards AprA in an AprA gradient. However, PTEN and CnrN also have distinct roles in some signaling pathways. PTEN, but not CnrN, decreases basal levels of PI(4,5)P 2 , AprA requires PTEN, but not CnrN, to induce cell roundness, and CnrN and PTEN have different effects on the number of filopods and pseudopods, and the sizes of filopods. Together, our results suggest that CnrN and PTEN play unique roles in D. discoideum signaling pathways, and possibly dephosphorylate PI(3,4,5)P 3 in different membrane domains, to mediate chemorepulsion away from AprA.

6.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260681

ABSTRACT

Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug resistance. Increased intracellular polyphosphate (polyP) in Mtb enhances resistance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.

7.
Ann Am Thorac Soc ; 21(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903340

ABSTRACT

"Translational medicine" has been a buzzword for over two decades. The concept was intended to be lofty, to reflect a new "bench-to-bedside" approach to basic and clinical research that would bridge fields, close gaps, accelerate innovation, and shorten the time and effort it takes to bring novel technologies from basic discovery to clinical application. Has this approach been successful and lived up to its promise? Despite incredible scientific advances and innovations developed within academia, successful clinical translation into real-world solutions has been difficult. This has been particularly challenging within the pulmonary field, because there have been fewer U.S. Food and Drug Administration-approved drugs and higher failure rates for pulmonary therapies than with other common disease areas. The American Thoracic Society convened a working group with the goal of identifying major challenges related to the commercialization of technologies within the pulmonary space and opportunities to enhance this process. A survey was developed and administered to 164 participants within the pulmonary arena. This report provides a summary of these survey results. Importantly, this report identifies a number of poorly recognized challenges that exist in pulmonary academic settings, which likely contribute to diminished efficiency of commercialization efforts, ultimately hindering the rate of successful clinical translation. Because many innovations are initially developed in academic settings, this is a global public health issue that impacts the entire American Thoracic Society community. This report also summarizes key resources and opportunities and provides recommendations to enhance successful commercialization of pulmonary technologies.


Subject(s)
Biomedical Technology , Pulmonary Medicine , Translational Science, Biomedical , Humans , United States
8.
mBio ; 14(5): e0193923, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37754562

ABSTRACT

IMPORTANCE: Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.


Subject(s)
Dictyostelium , Polyphosphates , Humans , Polyphosphates/metabolism , Diphosphates/metabolism , Dictyostelium/microbiology , Bacteria/metabolism , Phagocytosis , TOR Serine-Threonine Kinases
9.
J Cell Sci ; 136(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37259831

ABSTRACT

During developmental and immune responses, cells move towards or away from some signals. Although much is known about chemoattraction, chemorepulsion (the movement of cells away from a stimulus) remains poorly understood. Proliferating Dictyostelium discoideum cells secrete a chemorepellent protein called AprA. Examining existing knockout strains, we previously identified proteins required for AprA-induced chemorepulsion, and a genetic screen suggested that the enzyme phosphatidylinositol phosphate kinase A (PIPkinA, also known as Pik6) might also be needed for chemorepulsion. Here, we show that cells lacking PIPkinA are not repelled by AprA, and that this phenotype is rescued by expression of PIPkinA. To bias cell movement, AprA inhibits Ras activation at the side of the cell closest to the source of AprA, and we find that PIPkinA is required for AprA to inhibit Ras activation. PIPkinA decreases levels of phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3], and possibly because of these effects, potentiates phagocytosis and inhibits cell proliferation. Cells lacking PIPkinA show normal AprA binding, suggesting that PIPkinA regulates chemorepulsion at a step between the AprA receptor and AprA inhibition of Ras activation.


Subject(s)
Dictyostelium , Dictyostelium/metabolism , Phosphates/metabolism , Phosphates/pharmacology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Cell Proliferation , Genetic Testing
10.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36982997

ABSTRACT

Dictyostelium discoideum is a soil-dwelling unicellular eukaryote that accumulates extracellular polyphosphate (polyP). At high cell densities, when the cells are about to overgrow their food supply and starve, the corresponding high extracellular concentrations of polyP allow the cells to preemptively anticipate starvation, inhibit proliferation, and prime themselves to begin development. In this report, we show that starved D. discoideum cells accumulate cell surface and extracellular polyP. Starvation reduces macropinocytosis, exocytosis, and phagocytosis, and we find that these effects require the G protein-coupled polyP receptor (GrlD) and two enzymes, Polyphosphate kinase 1 (Ppk1), which is required for synthesizing intracellular polyP, cell surface polyP, and some of the extracellular polyP, and Inositol hexakisphosphate kinase (I6kA), which is required for cell surface polyP and polyP binding to cells, and some of the extracellular polyP. PolyP reduces membrane fluidity, and we find that starvation reduces membrane fluidity; this effect requires GrlD and Ppk1, but not I6kA. Together, these data suggest that in starved cells, extracellular polyP decreases membrane fluidity, possibly as a protective measure. In the starved cells, sensing polyP appears to decrease energy expenditure from ingestion, and decrease exocytosis, and to both decrease energy expenditures and retain nutrients.


Subject(s)
Dictyostelium , Dictyostelium/metabolism , Polyphosphates/pharmacology , Polyphosphates/metabolism , Receptors, G-Protein-Coupled/metabolism , Phagocytosis , Exocytosis
SELECTION OF CITATIONS
SEARCH DETAIL