Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1425336, 2024.
Article in English | MEDLINE | ID: mdl-39246818

ABSTRACT

The Mi-1.2 gene confers resistance to a wide range of Meloidogyne species, being the most important resistance factor employed in tomato breeding so far. However, many aspects related to the interaction of Mi-1.2-carrying tomato cultivars and virulent/avirulent Meloidogyne populations have not yet been clarified. Herein, comparative histopathological analyses were carried after inoculation of the homozygous (Mi-1.2/Mi-1.2) tomato rootstock 'Guardião' and the susceptible cultivar 'Santa Clara' (mi-1.2/mi-1.2) with virulent and avirulent populations of M. javanica. In the susceptible control, it was possible to visualize second stage juveniles (J2) of avirulent population and feeding sites from 2 to 30 days after infection (DAI) with females reaching maturity at 24-34 DAI. In the resistant rootstock, the Mi-1.2 gene-mediated resistance was related mainly to early defense responses (pre-infection and hypersensitive reaction), which led to an immunity-like phenotype that completely prevented the reproduction of the avirulent Meloidogyne population. On the other hand, J2s of the virulent M. javanica population were able to penetrate roots much more than the avirulent population, migrated and developed normally, showing intense and similar pattern of penetration from 4 to 34 DAI in the root tissues of both resistant and susceptible tomato genotypes. The total numbers of J2, J3, J4, and females counted in 'Santa Clara' for the virulent population of M. javanica were higher than in 'Guardião'.

2.
Planta ; 258(1): 5, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37219749

ABSTRACT

MAIN CONCLUSION: An exonuclease V homologue from apomictic Brachiaria brizantha is expressed and localized in nucellar cells at key moments when these cells differentiate to give rise to unreduced gametophytes. Brachiaria is a genus of forage grasses with economical and agricultural importance to Brazil. Brachiaria reproduces by aposporic apomixis, in which unreduced embryo sacs, derived from nucellar cells, other than the megaspore mother cell (MMC), are formed. The unreduced embryo sacs produce an embryo without fertilization resulting in clones of the mother plant. Comparative gene expression analysis in ovaries of sexual and apomictic Brachiaria spp. revealed a sequence from B. brizantha that showed a distinct pattern of expression in ovaries of sexual and apomictic plants. In this work, we describe a gene named BbrizExoV with strong identity to exonuclease V (Exo V) genes from other grasses. Sequence analysis in signal prediction tools showed that BbrizExoV might have dual localization, depending on the translation point. A longer form to the nucleus and a shorter form which would be directed to the chloroplast. This is also the case for monocot sequences analyzed from other species. The long form of BbrizExoV protein localizes to the nucleus of onion epidermal cells. Analysis of ExoV proteins from dicot species, with exception of Arabidopsis thaliana ExoVL protein, showed only one localization. Using a template-based AlphaFold 2 modelling approach the structure of BbrizExoV in complex with metal and ssDNA was predicted based on the holo structure of the human counterpart. Features predicted to define ssDNA binding but a lack of sequence specificity are shared between the human enzyme and BbrizExoV. Expression analyses indicated the precise site and timing of transcript accumulation during ovule development, which coincides with the differentiation of nucelar cells to form the typical aposporic four-celled unreduced gametophyte. A putative function for this protein is proposed based on its homology and expression pattern.


Subject(s)
Apomixis , Arabidopsis , Brachiaria , Humans , Exodeoxyribonuclease V , Gametogenesis, Plant , Germ Cells, Plant , Poaceae
3.
Planta ; 252(3): 39, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32797317

ABSTRACT

MAIN CONCLUSION: In Brachiaria brizantha BbrizSERK1, BbrizSERK2 and BbrizSERK3 were identified. SERK expression marks somatic embryogenesis, sexual MMC, and sexual and apomictic PMC. BbrizSERK3 might have a regulatory role in reproductive development. Somatic embryogenesis receptor-like kinase (SERK) consists of plasma membrane receptor genes that have been characterized in various species, associated with several aspects of plant development, including reproduction. SERK genes are involved in anther development and in early embryo development in sexual and asexual seed formation. To comprehend the complexity of the SERK genes and their function in Brachiaria reproduction, we performed a homology-based search in a genomic database of a sexual B. brizantha and identified sequences of three SERK genes, BbrizSERK1, BbrizSERK2, and BbrizSERK3. RNASeq data showed equivalent abundance of BbrizSERK1 and BbrizSERK2 transcripts in ovaries at early megasporogenesis of sexuals and apomicts, while BbrizSERK3 transcripts were more abundant in ovaries of sexuals than in apomicts. BbrizSERK3 results in three coding sequences due to alternative splicing, among them Variant 1 results in a protein with all the predicted domains of a SERK. BbrizSERK transcripts were detected in male reproductive tissues of both sexual and apomictic plants, suggesting a role in controlling anther development. BbrizSERK transcripts were detected early in ovule development, in the integuments, and in the megaspore mother cell of the sexual plant, but not in the cells that give rise to apomictic embryo sacs, suggesting a role in female reproductive development of sexuals. This paper provides evidences that SERK genes plays a role in the onset and establishment of somatic embryogenesis and in the reproductive development of B. brizantha and suggests a distinct role of BbrizSERK in apomixis initiation.


Subject(s)
Brachiaria/growth & development , Brachiaria/genetics , Gene Expression Regulation, Plant , Plant Development/genetics , Reproduction/genetics , Seeds/growth & development , Seeds/genetics , Gene Expression Regulation, Developmental , Genes, Plant , Plant Somatic Embryogenesis Techniques
4.
Phytopathology ; 109(11): 1941-1948, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31215839

ABSTRACT

Meloidogyne graminicola causes significant damage to rice fields worldwide. Sources of resistance to M. graminicola reported in Oryza sativa are limited. Resistance to this species has been found in other Oryza species such as O. glaberrima and O. longistaminata. This study aimed to evaluate the reaction of four wild species of Oryza from the Embrapa Rice and Bean Germplasm Bank (Goiás, Brazil) to a pool of M. graminicola populations and determine the resistance mechanism in O. glumaepatula. Two genotypes of O. glaberrima, one of O. alta, three of O. glumaepatula, one of O. grandiglumis, one of O. longistaminata, and one of O. sativa (control) were included in the study. The results showed that O. glumaepatula was highly resistant (reproduction factor [RF] < 1). O. glaberrima, O. alta, and O. grandiglumis were considered moderately resistant. O. longistaminata was susceptible, although values of RF remained lower than the control O. sativa 'BR-IRGA 410', considered highly susceptible. Histological observations on the interaction of O. glumaepatula and M. graminicola showed reduced penetration of second-stage juveniles (J2s) when this resistant wild accession was compared with O. sativa. An intense hypersensitivity response-like reaction occurred at 2 days after inoculation in the root cortex of the resistant accession. Few J2s established in the central cylinder, and rare collapsed giant cells were observed surrounded by degenerate females. Fluorescence microscopy in O. glumaepatula revealed giant cells and the female body presumably exhibiting accumulation of phenolic compounds. Our study suggests that wild rice accessions, especially from the AA genotype (e.g., O. glumaepatula), are of great interest for use in future breeding programs with Oryza spp.


Subject(s)
Disease Resistance , Oryza , Tylenchoidea , Animals , Brazil , Disease Resistance/genetics , Genotype , Oryza/parasitology , Plant Diseases/genetics , Plant Diseases/parasitology , Tylenchoidea/physiology
5.
An Acad Bras Cienc ; 90(2): 1789-1797, 2018.
Article in English | MEDLINE | ID: mdl-29898118

ABSTRACT

Brachiaria brizantha is a forage grass well adapted to tropical areas and cultivated in millions of hectares in Brazil. The apomictic mode of reproduction in this species, in addition to differences in ploidy between sexual and apomictic plants, impairs crossbreeding. The development of a methodology to transform apomictic cultivars will provide an option to introduce agronomic important traits to B. brizantha cv. Marandu. In addition, it will open the possibility to study in vivo the function of candidate genes involved in the apomictic reproduction. The objective of this work was to evaluate peeled seeds, isolated embryo from mature seeds, embryogenic calluses and embryogenic cell suspensions, as target explant for genetic transformation via biolistics. Plasmids bearing the marker genes gus and hptII under the control of the rice actin 1 promoter (pAct1-Os) or the maize ubiquitin 1 promoter (pUbi1Zm) were used. All the target-explants used were suitable for transient gene expression after bombardment, showing gus expression and resistance to hygromycin. Using embryogenic calluses and cell suspensions as target tissues, transgenic plants were regenerated and transgenes detected.


Subject(s)
Biolistics/methods , Brachiaria/genetics , Gene Expression Regulation, Plant/genetics , Transformation, Genetic , Cinnamates/administration & dosage , Genetic Markers , Hygromycin B/administration & dosage , Hygromycin B/analogs & derivatives , Plant Somatic Embryogenesis Techniques/methods , Plants, Genetically Modified/genetics , Plasmids/administration & dosage , Seeds/embryology , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL