Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Clin. biomed. res ; 42(3): 210-217, 2022.
Article in Portuguese | LILACS | ID: biblio-1414974

ABSTRACT

Introdução: Diabetes tipo 2 (DM2) é um distúrbio multifatorial caracterizado pelo aumento dos níveis de radicais livres. Tanto o estresse oxidativo quanto a obesidade contribuem para um estado inflamatório da doença, principalmente pelo aumento da citocina TNF-α. Sabendo-se que a genética individual pode contribuir para o estresse oxidativo, o estudo avaliou o impacto das variações genéticas de enzimas antioxidantes C262T no gene CAT e polimorfismos nulos dos genes GSTM1 e GSTT1 nos níveis de TNF-α, assim como, avaliou se as variantes genéticas atuariam sinergicamente com a obesidade aumentando os níveis da citocina em diabéticos da Grande Vitória/ES, Brasil.Métodos: O polimorfismo no gene CAT foi avaliado pela técnica PCR/RFLP e nos genes GSTM1 e GSTT1 por PCR multiplex, em 56 pacientes, sendo 28 obesos e 28 não obesos. Níveis de TNF-α foram medidos pela técnica de ELISA sanduíche.Resultados: Frequências das variantes nulas de GSTM1 e GSTT1 foram 44,6% e 17,9%, respectivamente. As frequências genotípicas C262T-CAT foram 73,2%, 25% e 1,8% para homozigoto normal, heterozigoto e homozigoto polimórfico, respectivamente. Não houve associação entre genótipos polimórficos e aumento dos níveis de TNF-α, assim como, não foi demonstrado aumento significante da citocina quando avaliado o sinergismo entre obesidade e genética individual do paciente.Conclusão: Níveis de TNF-α não se elevam em diabéticos tipo 2 na presença dos polimorfismos nos genes CAT, GSTM1 e GSTT1, e a obesidade não atua no aumento dessa citocina na população estudada, separadamente ou em conjunto com a genética individual de variantes nos genes CAT, GSTM1 e GSTT1.


Introduction: Type 2 diabetes is a multifactorial disorder characterized by increased levels of free radicals. Both oxidative stress and obesity contribute to an inflammatory state of the disease, mainly by increasing the levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). Considering that personal genetics may contribute to oxidative stress, this study assessed the impact of CAT C-262T polymorphism and GSTM1 and GSTT1 null polymorphisms on TNF-α levels in patients with type 2. diabetes. The study also evaluated whether the genetic variants act synergistically with obesity to increase TNF-α levels in patients with diabetes from Grande Vitória, Brazil.Methods: Fifty-six patients were included, of whom 28 were obese and 28 were nonobese. The CAT gene polymorphism was assessed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, whereas GSTM1 and GSTT1 polymorphisms were assessed using multiplex PCR. TNF-α levels were measured using the sandwich ELISA technique.Results: Frequencies of GSTM1 and GSTT1 null polymorphisms were 44.6% and 17.9%, respectively. The genotype frequencies of CATC-262T polymorphism were 73.2%, 25.0%, and 1.8% for normal homozygote, heterozygote, and polymorphic homozygote, respectively. Polymorphic genotypes were not associated with increased TNF-α levels, and there was no significant increase in TNF-α levels when evaluating the synergism between obesity and personal genetics.Conclusion: The presence of CAT, GSTM1, and GSTT1 gene polymorphisms was not associated with increased TNF-α levels in patients with type 2 diabetes. Obesity alone or combined with personal genetics of CAT, GSTM1, and GSTT1gene polymorphisms did not promote increased TNF-α levels in the study population.


Subject(s)
Humans , Tumor Necrosis Factor-alpha/genetics , Oxidative Stress , Diabetes Mellitus, Type 2/diagnosis , Glutathione S-Transferase pi/genetics , Obesity/physiopathology , Cytokines/analysis , Tumor Necrosis Factor-alpha/deficiency , Glutathione S-Transferase pi/deficiency
2.
Nat Prod Res ; 35(22): 4643-4647, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34798693

ABSTRACT

Staphylococcus aureus is an opportunistic agent that can cause a variety of infections, both hospital and community-acquired. Epigallocatechin gallate (EGCG), a flavonoid present in the leaves of Camellia sinensis, has different biological activities, including antimicrobial potential. Here we evaluate the antibacterial and antibiofilm potential of EGCG in nine clinical strains of S. aureus with different genetic profile and antimicrobial susceptibilities. The minimum inhibitory concentrations (MIC) of EGCG ranged from 7.81 to 62.5 µg/mL, and bactericidal activity was observed at 4 times the MIC. Sub-inhibitory concentrations were able to inhibit biofilm production. Concentrations ≤62.5 µg/mL of EGCG were non-cytotoxic for murine macrophages. EGCG significantly reduced the mortality of infected Galleria mellonella larvae with the S. aureus, having shown relevant antibiofilm properties and efficacy in inhibiting the growth of different clinical isolates of S. aureus, thus being a promising substance for the treatment of infections caused by this agent.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Catechin/analogs & derivatives , Methicillin Resistance , Mice , Microbial Sensitivity Tests
3.
PLoS Negl Trop Dis ; 15(7): e0009605, 2021 07.
Article in English | MEDLINE | ID: mdl-34324509

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) play a critical role during Mycobacterium tuberculosis (Mtb) infection, modulating host responses while neutralizing excessive inflammation. However, their impact on regulating host protective immunity is not completely understood. Here, we demonstrate that Treg cells abrogate the in vitro microbicidal activity against Mtb. METHODS: We evaluated the in vitro microbicidal activity of peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB), individuals with latent tuberculosis infection (LTBI, TST+/IGRA+) and healthy control (HC, TST-/IGRA-) volunteers. PBMCs, depleted or not of CD4+CD25+ T-cells, were analyzed to determine frequency and influence on microbicidal activity during in vitro Mtb infection with four clinical isolates (S1, S5, R3, and R6) and one reference strain (H37Rv). RESULTS: The frequency of CD4+CD25highFoxP3+ cells were significantly higher in Mtb infected whole blood cultures from both TB patients and LTBI individuals when compared to HC. Data from CD4+CD25+ T-cells depletion demonstrate that increase of CD4+CD25highFoxP3+ is associated with an impairment of Th-1 responses and a diminished in vitro microbicidal activity of LTBI and TB groups. CONCLUSIONS: Tregs restrict host anti-mycobacterial immunity during active disease and latent infection and thereby may contribute to both disease progression and pathogen persistence.


Subject(s)
Blood Bactericidal Activity , CD4 Antigens/metabolism , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , CD4 Antigens/genetics , Case-Control Studies , Forkhead Transcription Factors/genetics , Humans , Interleukin-2 Receptor alpha Subunit/genetics , T-Lymphocytes, Regulatory
4.
Article in English | MEDLINE | ID: mdl-31993374

ABSTRACT

B-1 cells are an innate-like population of B lymphocytes that are subdivided into B-1a and B-1b distinguished by the presence or absence of CD5, respectively. B-1 cells can act as regulatory B cells, are able to present antigen and produce IL-10. Leishmaniasis in humans is a complex of diseases caused by parasites of the genus Leishmania. More than 20 species can infect humans, with each species causing the development of different immunological responses in the host. Susceptibility is usually related to the production of anti-inflammatory cytokines while the production of Th1 cytokines is indicative of resistance. However, few studies have attempted to evaluate the role of B-1 cells during either the in vivo infection or in vitro interaction with Leishmania parasites. In vivo studies were performed using XID mice model, BALB/Xid mice have a mutation in the Bruton's tyrosine kinase, which is an important enzyme for developing B-1 and maturing B-2 lymphocytes leading to the presence of immature B-2 cells. Here, we compile these studies and assess the influence of B-1 cells on disease progression with different Leishmania species.


Subject(s)
B-Lymphocyte Subsets/immunology , Interleukin-10/metabolism , Leishmania/immunology , Leishmaniasis/immunology , Leishmaniasis/parasitology , Agammaglobulinaemia Tyrosine Kinase/genetics , Animals , B-Lymphocytes/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Humans , Interleukin-10/genetics , Leishmania infantum/immunology , Leishmania major/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells
5.
Front Immunol ; 8: 893, 2017.
Article in English | MEDLINE | ID: mdl-28848541

ABSTRACT

Cutaneous leishmaniasis remains both a public health and a therapeutic challenge. To date, no ideal therapy for cutaneous leishmaniasis has been identified, and no universally accepted therapeutic regimen and approved vaccines are available. Due to the mesenchymal stromal cell (MSC) immunomodulatory capacity, they have been applied in a wide variety of disorders, including infectious, inflammatory, and allergic diseases. We evaluated the potential effects of bone marrow MSC therapy in a murine model of cutaneous leishmaniasis. In vitro, coculture of infected macrophages with MSC increased parasite load on macrophages in comparison with controls (macrophages without MSCs). In vivo, BALB/c mice were infected with 2 × 106Leishmania amazonensis (Josefa strain) promastigotes in the footpad. 7 and 37 days after infection, animals were treated with 1 × 105 MSCs, either intralesional (i.l.), i.e., in the same site of infection, or intravenously (i.v.), through the external jugular vein. Control animals received the same volume (50 µL) of phosphate-buffered saline by i.l. or i.v. routes. The lesion progression was assessed by its thickness measured by pachymetry. Forty-two days after infection, animals were euthanized and parasite burden in the footpad and in the draining lymph nodes was quantified by the limiting dilution assay (LDA), and spleen cells were phenotyped by flow cytometry. No significant difference was observed in lesion progression, regardless of the MSC route of administration. However, animals treated with i.v. MSCs presented a significant increase in parasite load in comparison with controls. On the other hand, no harmful effect due to MSCs i.l. administered was observed. The spleen cellular profile analysis showed an increase of IL-10 producing T CD4+ and TCD8+ cells in the spleen only in mice treated with i.v. MSC. The excessive production of IL-10 could be associated with the disease-aggravating effects of MSC therapy when intravenously administered. As a conclusion, in the current murine model of L. amazonensis-induced cutaneous disease, MSCs did not control the damage of cutaneous disease and, depending on the administration route, it could result in deleterious effects.

6.
Mem. Inst. Oswaldo Cruz ; 107(3): 416-419, May 2012. graf
Article in English | LILACS | ID: lil-624025

ABSTRACT

Ketoconazole is a clinically safe antifungal agent that also inhibits the growth of Leishmania spp. A study was undertaken to determine whether Leishmania parasites are prone to becoming resistant to ketoconazole by upregulating C14-demethylase after stepwise pharmacological pressure. Leishmania amazonensis promastigotes [inhibitory concentration (IC)50 = 2 µM] were subjected to stepwise selection with ketoconazole and two resistant lines were obtained, La8 (IC50 = 8 µM) and La10 (IC50 = 10 µM). As a result, we found that the resistance level was directly proportional to the C14-demethylase mRNA expression level; we also observed that expression levels were six and 12 times higher in La8 and La10, respectively. This is the first demonstration that L. amazonensis can up-regulate C14-demethylase in response to drug pressure and this report contributes to the understanding of the mechanisms of parasite resistance.


Subject(s)
Antiprotozoal Agents/pharmacology , Ketoconazole/pharmacology , Leishmania mexicana/drug effects , Leishmania mexicana/enzymology , /metabolism , Up-Regulation/drug effects , Parasitic Sensitivity Tests , Real-Time Polymerase Chain Reaction , RNA, Messenger/analysis , RNA, Protozoan/analysis , /genetics
7.
Mem Inst Oswaldo Cruz ; 107(3): 416-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22510839

ABSTRACT

Ketoconazole is a clinically safe antifungal agent that also inhibits the growth of Leishmania spp. A study was undertaken to determine whether Leishmania parasites are prone to becoming resistant to ketoconazole by upregulating C14-demethylase after stepwise pharmacological pressure. Leishmania amazonensis promastigotes [inhibitory concentration (IC)50 = 2 µM] were subjected to stepwise selection with ketoconazole and two resistant lines were obtained, La8 (IC50 = 8 µM) and La10 (IC50 = 10 µM). As a result, we found that the resistance level was directly proportional to the C14-demethylase mRNA expression level; we also observed that expression levels were six and 12 times higher in La8 and La10, respectively. This is the first demonstration that L. amazonensis can up-regulate C14-demethylase in response to drug pressure and this report contributes to the understanding of the mechanisms of parasite resistance.


Subject(s)
Antiprotozoal Agents/pharmacology , Ketoconazole/pharmacology , Leishmania mexicana/drug effects , Leishmania mexicana/enzymology , Sterol 14-Demethylase/metabolism , Up-Regulation/drug effects , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , RNA, Messenger/analysis , RNA, Protozoan/analysis , Real-Time Polymerase Chain Reaction , Sterol 14-Demethylase/genetics
8.
Acta Trop ; 104(2-3): 133-9, 2007.
Article in English | MEDLINE | ID: mdl-17919443

ABSTRACT

This study evaluated the potential of a Leishmania antigen vaccine in protecting BALB/c mice against Leishmania chagasi. Mice received two subcutaneous doses of L. amazonensis vaccine with Corynebacterium parvum and subsequent boost was done without adjuvant. One week later, mice were challenged with L. chagasi. We observed that this vaccine caused a significant reduction in parasite load in liver and spleen and induced a high production of IFN-gamma and IL-4 by spleen cells from vaccinated mice in response to Leishmania antigen. Together, our data show that this vaccine is capable of inducing a Th1/Th2 response that is important to control parasite replication.


Subject(s)
Antigens, Protozoan/immunology , Leishmania/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis/immunology , Propionibacterium acnes/immunology , Animals , Female , Interferon-gamma/biosynthesis , Interleukin-4/biosynthesis , Leishmaniasis/parasitology , Leishmaniasis/prevention & control , Leishmaniasis Vaccines/administration & dosage , Leishmaniasis Vaccines/therapeutic use , Liver/drug effects , Liver/metabolism , Liver/parasitology , Mice , Mice, Inbred BALB C , Spleen/drug effects , Spleen/metabolism , Spleen/parasitology , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology
9.
Parasitol Res ; 101(4): 853-63, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17530480

ABSTRACT

Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. A complete open reading frame of oligopeptidase B from Leishmania amazonensis was amplified with polymerase chain reaction with gradient annealing temperatures using primers designed for the oligopeptidase B gene from L. major. The 2,196-bp fragment coded for a protein of 731 amino acids with a predicted molecular mass of 83.49 KDa. The encoded protein (La_OpB) shares a 90% identity with oligopeptidases of L. major and L. infantum, 84% with L. braziliensis, and approximately 62 identity with Trypanosoma peptidases. The oligopeptidase B gene is expressed in all cycle stages of L. amazonensis. The three dimensional model of La_OpB was obtained by homology modeling based on the structure of prolyl oligopeptidases. We mapped a La_OpB model that presents a greater negative charge than prolyl oligopeptidases; our results suggest a difference in the S2 subsite when compared to oligopeptidases B from Trypanosoma and bacterial oligopeptidases B. The La_OpB model serves as a starting point for its exploration as a potential target source for a rational chemotherapy.


Subject(s)
Cloning, Molecular , Gene Expression Regulation , Leishmania/enzymology , Models, Molecular , Serine Endopeptidases , Amino Acid Sequence , Animals , Base Sequence , Leishmania/classification , Leishmania/genetics , Leishmania/growth & development , Molecular Sequence Data , Sequence Homology, Amino Acid , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
10.
Vaccine ; 25(12): 2168-72, 2007 Mar 08.
Article in English | MEDLINE | ID: mdl-17240003

ABSTRACT

We previously showed that intranasal (i.n.) vaccination with pCIneo plasmid encoding the leishmanial LACK gene (pCIneo-LACK) induces long-lasting protective immunity against cutaneous leishmaniasis in mice. In this work, we proposed to investigate whether the efficacy of i.n. pCIneo-LACK is extensive to visceral leishmaniasis. BALB/c mice received two i.n. doses of 30 microg pCIneo-LACK prior to intravenous (i.v.) infection with Leishmania chagasi. Vaccinated mice developed significantly lower parasite burden in the liver and spleen than control mice receiving empty pCIneo or saline. The spleen cells of vaccinated mice produced significantly increased IFN-gamma and IL-4 concomitant with decreased IL-10 production during infection. Serum levels of specific IgG were elevated whereas TNF-alpha were decreased as compared with controls. These results show that the practical needle-free i.n. pCIneo-LACK vaccine displays potential broad-spectrum activity against leishmaniasis.


Subject(s)
Antigens, Protozoan/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Visceral/immunology , Protozoan Proteins/immunology , Protozoan Vaccines/immunology , Administration, Intranasal , Animals , Antigens, Protozoan/genetics , DNA, Protozoan/genetics , Interferon-gamma/metabolism , Interleukin-4/metabolism , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/prevention & control , Leishmaniasis, Visceral/genetics , Liver/drug effects , Liver/parasitology , Mice , Mice, Inbred BALB C , Plasmids/administration & dosage , Protozoan Proteins/genetics , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Spleen/drug effects , Spleen/metabolism , Spleen/parasitology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL