Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Immunol Invest ; 52(7): 796-814, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37665564

ABSTRACT

Inflammatory bowel diseases (IBD) cause increased inflammatory signalling and oxidative damage. IBDs are correlated with an increased incidence of brain-related disorders suggesting that the gut-brain-axis exerts a pivotal role in IBD. Butyrate is one of the main microbial metabolites in the colon, and it can cross the blood-brain barrier, directly affecting the brain. We induced ulcerative colitis (UC) in mice utilizing dextran sodium sulfate (DSS) in the drinking water for 7 days. Animals were divided into four groups, receiving water or DSS and treated with saline or 0,066 g/kg of Sodium Butyrate for 7 days. We also used an integrative approach, combining bioinformatics functional network and experimental strategies to understand how butyrate may affect UC. Butyrate was able to attenuate colitis severity and intestinal inflammation. Butyrate protected the colon against oxidative damage in UC and protected the prefrontal cortex from neuroinflammation observed in DSS group. Immunocontent of tight junction proteins Claudin-5 and Occludin were reduced in colon of DSS group mice and butyrate was able to restore to control levels. Occludin and Claudin-5 decrease in DSS group indicate that an intestinal barrier disruption may lead to the increased influx of gut-derived molecules, causing neuroinflammation in the prefrontal cortex, observed by increased IBA-1 marker. The probable protection mechanism of butyrate treatment occurs through NRF2 through Nrf2 and HIF-1α activation and consequent activation of catalase and superoxide dismutase. Our data suggest that systemic inflammation associated with intestinal barrier disruption in UC leads to neuroinflammation in the prefrontal cortex, which was atenuated by butyrate.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Animals , Mice , Butyric Acid/therapeutic use , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Neuroinflammatory Diseases , Claudin-5 , NF-E2-Related Factor 2 , Occludin , Prefrontal Cortex , Inflammation/drug therapy , Disease Models, Animal
2.
Phytother Res ; 33(5): 1394-1403, 2019 May.
Article in English | MEDLINE | ID: mdl-30868680

ABSTRACT

Obesity is a metabolic disorder associated with adverse health consequences that has increased worldwide at an epidemic rate. This has encouraged many people to utilize nonprescription herbal supplements for weight loss without knowledge of their safety or efficacy. However, mounting evidence has shown that some herbal supplements used for weight loss are associated with adverse effects. Guarana seed powder is a popular nonprescription dietary herb supplement marketed for weight loss, but no study has demonstrated its efficacy or safety when administered alone. Wistar rats were fed four different diets (low-fat diet and Western diet with or without guarana supplementation) for 18 weeks. Metabolic parameters, gut microbiota changes, and toxicity were then characterized. Guarana seed powder supplementation prevented weight gain, insulin resistance, and adipokine dysregulation induced by Western diet compared with the control diet. Guarana induced brown adipose tissue expansion, mitochondrial biogenesis, uncoupling protein-1 overexpression, AMPK activation, and minor changes in gut microbiota. Molecular docking suggested a direct activation of AMPK by four guarana compounds tested here. We propose that brown adipose tissue activation is one of the action mechanisms involved in guarana supplementation-induced weight loss and that direct AMPK activation may underlie this mechanism. In summary, guarana is an attractive potential therapeutic agent to treat obesity.


Subject(s)
Adipokines/metabolism , Adipose Tissue, Brown/drug effects , Insulin Resistance , Paullinia/chemistry , Animals , Diet, High-Fat/adverse effects , Diet, Western , Dietary Supplements , Humans , Male , Molecular Docking Simulation , Obesity/metabolism , Rats , Rats, Wistar , Weight Gain , Weight Loss/drug effects
3.
AAPS PharmSciTech ; 19(7): 3029-3039, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30084071

ABSTRACT

Soybean isoflavone-rich extracts have been considered as promising skin antiaging products due to their antioxidant activity. This study investigates the effect of soybean isoflavone forms on porcine ear skin permeation/retention from topical nanoemulsions and their potential in protecting skin against oxidative damage caused by UVA/UVB light. Soybean non-hydrolyzed (SNHE) and hydrolyzed (SHE) extracts, mainly composed of genistin and genistein, were produced. Nanoemulsions containing SNHE (NESNHE) and SHE (NESHE) were prepared by spontaneous emulsification procedure and yielded monodispersed nanoemulsions. A delay of isoflavone release was observed after extracts incorporation into nanoemulsions when compared to a propyleneglycol dispersion of pure compounds. An increase of isoflavone skin retention from nanoemulsions was also achieved. However, from extracts, a higher amount of genistin (NESNHE) and a lower amount of genistein (NESHE) were detected in the skin in comparison to pure isoflavones. Finally, the protection of porcine ear skin by formulations against UVA/UVB oxidative stress was evaluated. Extract-loaded nanoemulsions offered better skin protection than pure isoflavones. Skin lipids were similarly protected by NESHE and NESNHE, whereas skin proteins were more protected by NESNHE. Overall, nanoemulsions containing isoflavone-rich soybean extracts may be considered a better topical formulation aiming skin protection from UVA/UVB oxidative damage.


Subject(s)
Antioxidants/metabolism , Glycine max , Isoflavones/metabolism , Nanoparticles/metabolism , Oxidative Stress/physiology , Skin Absorption/physiology , Administration, Topical , Animals , Antioxidants/administration & dosage , Antioxidants/isolation & purification , Emulsions , Genistein/administration & dosage , Genistein/metabolism , Isoflavones/administration & dosage , Isoflavones/isolation & purification , Nanoparticles/administration & dosage , Organ Culture Techniques , Oxidative Stress/drug effects , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Skin/drug effects , Skin/metabolism , Skin Absorption/drug effects , Swine
4.
Neurochem Res ; 42(8): 2257-2273, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28345118

ABSTRACT

During aging, there is a marked decline in the antioxidant capacity of brain tissue, leading to a gradual loss of the antioxidant/oxidant balance, which causes oxidative damage. The effects of Paullinia cupana Mart. extract, which is described as being rich in caffeine and many polyphenol compounds, on the central nervous system have not been extensively investigated. The aim of this study was to therefore investigate the effect of a commercial guarana extract (CGE) on cognitive function, oxidative stress, and brain homeostasis proteins related to cognitive injury and senescence in middle age, male Wistar rats. Animals were randomly assigned to a group according to their treatment (saline, CGE, or caffeine). Solutions were administered daily by oral gavage for 6 months. Open field and novel object recognition tasks were performed before and after treatment. Biochemical analyses were carried out on the hippocampus and striatum. Our open field data showed an increase in exploratory activity and a decrease in anxiety-like behavior with caffeine but not with the CGE treatment. In the CGE-treated group, catalase activity decreased in the hippocampus and increased in the striatum. Analyses of the hippocampus and striatum indicate that CGE and/or caffeine altered some of the analyzed parameters in a tissue-specific manner. Our data suggest that CGE intake does not improve cognitive development, but modifies the oxidative stress machinery and neurodegenerative-signaling pathway, inhibiting pro-survival pathway molecules in the hippocampus and striatum. This may contribute to the development of unfavorable microenvironments in the brain and neurodegenerative disorders.


Subject(s)
Aging/metabolism , Corpus Striatum/metabolism , Hippocampus/metabolism , Paullinia , Plant Extracts/pharmacology , Aging/drug effects , Animals , Antioxidants/isolation & purification , Antioxidants/pharmacology , Corpus Striatum/drug effects , Dose-Response Relationship, Drug , Hippocampus/drug effects , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Plant Extracts/isolation & purification , Rats , Rats, Wistar , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
5.
Brain Behav Immun ; 62: 124-136, 2017 May.
Article in English | MEDLINE | ID: mdl-28088642

ABSTRACT

Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra). Intraperitoneal injection of RAGE antibody (50µg/kg) was followed after 1h by a single LPS (5mg/kg) intraperitoneal injection. Twenty-four hours later, tissues were isolated for analysis. RAGE antibody reduced LPS-induced inflammatory effects in both serum and liver; the levels of proinflammatory cytokines (TNF-α, IL-1ß) were decreased and the phosphorylation/activation of RAGE downstream targets (ERK1/2, IκB and p65) in liver were significantly attenuated. RAGE antibody prevented LPS-induced effects on TNF-α and IL-1ß in CSF. In striatum, RAGE antibody inhibited increases in IL-1ß, Iba-1, GFAP, phospho-ERK1/2 and phospho-tau (ser202), as well as the decrease in synaptophysin levels. These effects were caused by systemic RAGE inhibition, as RAGE antibody did not cross the blood-brain barrier. RAGE antibody also prevented striatal lipoperoxidation and activation of mitochondrial complex II. In conclusion, blockade of RAGE is able to inhibit inflammatory responses induced by LPS in serum, liver, CSF and brain.


Subject(s)
Antibodies/pharmacology , Corpus Striatum/drug effects , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Liver/drug effects , Receptor for Advanced Glycation End Products/immunology , Animals , Antibodies/therapeutic use , Corpus Striatum/metabolism , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Liver/metabolism , Male , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL