Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959054

ABSTRACT

The redox properties of the actinides in aqueous solution are important for fuel production/reprocessing and understanding the environmental impact of nuclear waste. The redox potentials for U, Np, Pu, and Am in oxidation states from 0 up to VII (as appropriate) in aqueous solutions have been predicted at the density functional theory level with the B3LYP functional, Stuttgart small core pseudopotential basis sets for the actinides, and explicit (30H2O molecules)/implicit treatment of the aqueous solvent using the self-consistent reaction field COSMO and SMD approaches for the implicit solvation. The predictions of the structural parameters of clusters incorporating first and second solvation shells are consistent with the available experimental data. Our results are typically within 0.2 V of the available experimental data using two explicit solvation shells with an implicit solvent model. The use of the PW91 functional substantially improved the prediction of the Pu(VI/V) redox couple. The redox couples for An(VI/IV) and An(V/IV) which involve the addition of protons and removal of the actinyl oxygens led to slightly larger differences from an experiment. The An(IV/0) and An(III/0) couples were reliably predicted with our approach. Predictions of the unknown An(II/I) redox potentials were negative, consistent with expectations, and predictions for unknown An(VII/VI), An(III/II), and An(II/0) redox couples improve prior estimates.

2.
J Phys Chem A ; 125(28): 6158-6170, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34240864

ABSTRACT

The energetics of hydrolysis reactions for high oxidation states of oxo/hydroxo monomeric actinide species (ThIVO2, PaIVO2, UIVO2, PaVO2(OH), UVO2(OH), UVIO3, NpVIO3, NpVIIO3(OH), and PuVIIO3(OH)) were calculated at the CCSD(T) level. The first step is the formation of a Lewis acid/base adduct with H2O (hydration), followed by a proton transfer to form a dihydroxide molecule (hydrolysis); this process is repeated until all oxo groups are hydrolyzed. The physisorption (hydration) for each H2O addition was predicted to be exothermic, ca. -20 kcal/mol. The hydrolysis products are preferred energetically over the hydration products for the +IV and +V oxidation states. The compounds with AnVI are a turning point in terms of favoring hydration over hydrolysis. For AnVIIO3(OH), hydration products are preferred, and only two waters can bind; the complete hydrolysis process is now endothermic, and the oxidation state for the An in An(OH)7 is +VI with two OH groups each having one-half an electron. The natural bond order charges and the reaction energies provide insights into the nature of the hydrolysis/hydration processes. The actinide charges and bond ionicity generally decrease across the period. The ionic character decreases as the oxidation state and coordination number increase so that covalency increases moving to the right in the actinide period.

SELECTION OF CITATIONS
SEARCH DETAIL
...