Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Foods ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34574280

ABSTRACT

The main cause of flesh browning in 'Rojo Brillante' persimmon fruit is mechanical damage caused during harvesting and packing. Innovation and research on nondestructive techniques to detect this phenomenon in the packing lines are necessary because this type of alteration is often only seen when the final consumer peels the fruit. In this work, we have studied the application of hyperspectral imaging in the range of 450-1040 nm to detect mechanical damage without any external symptoms. The fruit was damaged in a controlled manner. Later, images were acquired before and at 0, 1, 2 and 3 days after damage induction. First, the spectral data captured from the images were analysed through an algorithm based on principal component analysis (PCA). The aim was to automatically separate intact and damaged fruit, and to detect the damage in the PC images when present. With this algorithm, 90.0% of intact fruit and 90.8% of damaged fruit were correctly detected. A model based on partial least squares-discriminant analysis (PLS-DA), was later calibrated using the mean spectrum of the pixels detected as damaged, to determine the moment when the fruit was damaged. The model differentiated fruit corresponding correctly to 0, 1, 2 and 3 days after damage induction, achieving a total accuracy of 99.4%.

2.
Artif Intell Med ; 62(1): 47-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25091172

ABSTRACT

OBJECTIVE: Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on reinforcement learning (RL) to optimize ESA therapy. METHODS: RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision processes (MDPs). Computing optimal drug administration strategies for chronic diseases is a sequential decision-making problem in which the goal is to find the best sequence of drug doses. MDPs are particularly suitable for modeling these problems due to their ability to capture the uncertainty associated with the outcome of the treatment and the stochastic nature of the underlying process. The RL algorithm employed in the proposed methodology is fitted Q iteration, which stands out for its ability to make an efficient use of data. RESULTS: The experiments reported here are based on a computational model that describes the effect of ESAs on the hemoglobin level. The performance of the proposed method is evaluated and compared with the well-known Q-learning algorithm and with a standard protocol. Simulation results show that the performance of Q-learning is substantially lower than FQI and the protocol. When comparing FQI and the protocol, FQI achieves an increment of 27.6% in the proportion of patients that are within the targeted range of hemoglobin during the period of treatment. In addition, the quantity of drug needed is reduced by 5.13%, which indicates a more efficient use of ESAs. CONCLUSION: Although prospective validation is required, promising results demonstrate the potential of RL to become an alternative to current protocols.


Subject(s)
Anemia/drug therapy , Artificial Intelligence , Decision Support Techniques , Hematinics/therapeutic use , Reinforcement, Psychology , Renal Dialysis/adverse effects , Aged , Algorithms , Anemia/blood , Anemia/etiology , Chronic Disease , Female , Hemoglobin A/metabolism , Humans , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy , Male , Markov Chains , Middle Aged , Patient Selection
3.
Comput Biol Med ; 43(11): 1863-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24209931

ABSTRACT

Sparse Manifold Clustering and Embedding (SMCE) algorithm has been recently proposed for simultaneous clustering and dimensionality reduction of data on nonlinear manifolds using sparse representation techniques. In this work, SMCE algorithm is applied to the differential discrimination of Glioblastoma and Meningioma Tumors by means of their Gene Expression Profiles. Our purpose was to evaluate the robustness of this nonlinear manifold to classify gene expression profiles, characterized by the high-dimensionality of their representations and the low discrimination power of most of the genes. For this objective, we used SMCE to reduce the dimensionality of a preprocessed dataset of 35 single-labeling cDNA microarrays with 11500 original clones. Afterwards, supervised and unsupervised methodologies were applied to obtain the classification model: the former was based on linear discriminant analysis, the later on clustering using the SMCE embedding data. The results obtained using both approaches showed that all (100%) the samples could be correctly classified and the results of all repetitions but one formed a compatible cluster of predictive labels. Finally, the embedding dimensionality of the dataset extracted by SMCE revealed large discrimination margins between both classes.


Subject(s)
Cluster Analysis , Computational Biology/methods , Gene Expression Profiling/methods , Glioblastoma/genetics , Meningioma/genetics , Transcriptome/genetics , Algorithms , Databases, Genetic , Discriminant Analysis , Glioblastoma/metabolism , Humans , Meningioma/metabolism , Oligonucleotide Array Sequence Analysis
4.
Health Care Manag Sci ; 15(1): 79-90, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22083440

ABSTRACT

The Balanced Scorecard (BSC) is a validated tool to monitor enterprise performances against specific objectives. Through the choice and the evaluation of strategic Key Performance Indicators (KPIs), it provides a measure of the past company's outcome and allows planning future managerial strategies. The Fresenius Medical Care (FME) BSC makes use of 30 KPIs for a continuous quality improvement strategy within its dialysis clinics. Each KPI is monthly associated to a score that summarizes the clinic efficiency for that month. Standard statistical methods are currently used to analyze the BSC data and to give a comprehensive view of the corporate improvements to the top management. We herein propose the Self-Organizing Maps (SOMs) as an innovative approach to extrapolate information from the FME BSC data and to present it in an easy-readable informative form. A SOM is a computational technique that allows projecting high-dimensional datasets to a two-dimensional space (map), thus providing a compressed representation. The SOM unsupervised (self-organizing) training procedure results in a map that preserves similarity relations existing in the original dataset; in this way, the information contained in the high-dimensional space can be more easily visualized and understood. The present work demonstrates the effectiveness of the SOM approach in extracting useful information from the 30-dimensional BSC dataset: indeed, SOMs enabled both to highlight expected relationships between the KPIs and to uncover results not predictable with traditional analyses. Hence we suggest SOMs as a reliable complementary approach to the standard methods for BSC interpretation.


Subject(s)
Ambulatory Care Facilities/organization & administration , Quality of Health Care/organization & administration , Renal Dialysis , Humans , Quality Indicators, Health Care/organization & administration
5.
IEEE Trans Neural Netw ; 22(3): 505-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21257373

ABSTRACT

The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap; and presents high generalization capabilities. Bayesian ELM is benchmarked against classical ELM in several artificial and real datasets that are widely used for the evaluation of machine learning algorithms. Achieved results show that the proposed approach produces a competitive accuracy with some additional advantages, namely, automatic production of CIs, reduction of probability of model overfitting, and use of a priori knowledge.


Subject(s)
Algorithms , Artificial Intelligence , Bayes Theorem , Neural Networks, Computer , Computer Simulation , Pattern Recognition, Automated/methods
6.
Pest Manag Sci ; 65(1): 99-104, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18823066

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) is acknowledged around the world as an effective method for biological pest control of Ceratitis capitata (Wiedemann). Sterile insects are produced in biofactories where one key issue is the selection of the progenitors that have to transmit specific genetic characteristics. Recombinant individuals must be removed as this colony is renewed. Nowadays, this task is performed manually, in a process that is extremely slow, painstaking and labour intensive, in which the sex of individuals must be identified. The paper explores the possibility of using vision sensors and pattern recognition algorithms for automated detection of recombinants. RESULTS: An automatic system is proposed and tested to inspect individual specimens of C. capitata using machine vision. It includes a backlighting system and image processing algorithms for determining the sex of live flies in five high-resolution images of each insect. The system is capable of identifying the sex of the flies by means of a program that analyses the contour of the abdomen, using fast Fourier transform features, to detect the presence of the ovipositor. Moreover, it can find the characteristic spatulate setae of males. Simulation tests with 1000 insects (5000 images) had 100% success in identifying male flies, with an error rate of 0.6% for female flies. CONCLUSION: This work establishes the basis for building a machine for the automatic detection and removal of recombinant individuals in the selection of progenitors for biofactories, which would have huge benefits for SIT around the globe.


Subject(s)
Artificial Intelligence , Ceratitis capitata/physiology , Sex Characteristics , Animals , Automation , Entomology/methods , Female , Male , Pest Control, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...