Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(10): 26496-26509, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36369436

ABSTRACT

Although coral bleaching is increasing worldwide due to warming oceans exacerbated by climate change, there has been a growing recognition that local stressors may play an additional role. Important stressors include the physicochemical and microbiological influences that are related to river runoff. Here, we investigated the microbiota associated to mucus and tissue of endemic coral Siderastrea stellata, collected from Brazilian northeast coral reefs of Barra de Santo Antônio (subject to river runoff) and Maragogi (minimal river runoff) during both the rainy and dry seasons. We sequenced the V4 region of 16S rDNA and used multiple R packages to process raw data and performed statistical analysis to reveal the microbial community structure composition and functional predictions. Major dissimilarities between microbial communities were related to seasonality, while healthy and bleached specimens were mainly associated with the enrichment of several less abundant taxa involved in specific metabolic functions, mainly related to the nitrogen cycle. We were not able to observe the dominance of groups that has been previously associated with bleachings, such as Vibrionaceae or Burkholderiaceae. The influx of freshwater appears to increase the homogeneity between individuals in Barra de Santo Antonio, especially during the rainy season. By contrast, we observed an increased homogeneity between samples in Maragogi during the dry season. Understanding the dynamics of the coral microbiota and how bleaching appears in response to specific environmental variables, in addition to determining the conditions that lead to a more robust coral microbiota, is essential for choosing the most appropriate area and conservation methods, for example.


Subject(s)
Anthozoa , Microbiota , Animals , Anthozoa/microbiology , Brazil , Rivers , Coral Reefs
2.
J Fungi (Basel) ; 8(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35887425

ABSTRACT

Emerging and unregulated contaminants end up in soils via stabilized/composted sewage sludges, paired with possible risks associated with the development of microbial resistance to antimicrobial agents or an imbalance in the microbial communities. An enrichment experiment was performed, fortifying the sewage sludge with carbamazepine, ketoprofen and diclofenac as model compounds, with the aim to obtain strains with the capability to transform these pollutants. Culturable microorganisms were obtained at the end of the experiment. Among fungi, Cladosporium cladosporioides, Alternaria alternata and Penicillium raistrickii showed remarkable degradation rates. Population shifts in bacterial and fungal communities were also studied during the selective pressure using Illumina MiSeq. These analyses showed a predominance of Ascomycota (Dothideomycetes and Aspergillaceae) and Actinobacteria and Proteobacteria, suggesting the possibility of selecting native microorganisms to carry out bioremediation processes using tailored techniques.

3.
Bioresour Technol ; 298: 122550, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31837577

ABSTRACT

Bacterial and fungal communities in a full-scale composting pile were investigated, with sewage sludge and a vegetal bulking agent as starting materials. Bacillales and Actinomycetales were predominant throughout the process, showing significant abundance. Ascomycota was the predominant fungal phylum during the thermophilic phase, with a shift to Basidiomycota at the end of the process. The bulking material was the principal contributor to both communities by the end of the process, with a signal above 50%. The presence of genera, such as Pedomicrobium, Ureibacillus and Tepidimicrobium at the end of the process, and Chaetomium and Arthrographis in the maturation phase, showed an inverse correlation with indicators of organic matter stabilisation. A semipermeable cover was an effective technology for excluding pathogens. These results indicate that changes in the microbial population and their interrelation with operational variables could represent a useful tool for monitoring composting processes.


Subject(s)
Basidiomycota , Composting , Mycobiome , Bacteria , Sewage , Soil
4.
Microbiome ; 6(1): 71, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29661230

ABSTRACT

BACKGROUND: A majority of indoor residential microbes originate from humans, pets, and outdoor air and are not adapted to the built environment (BE). Consequently, a large portion of the microbes identified by DNA-based methods are either dead or metabolically inactive. Although many exceptions have been noted, the ribosomal RNA fraction of the sample is more likely to represent either viable or metabolically active cells. We examined methodological variations in sample processing using a defined, mock BE microbial community to better understand the scope of technique-based vs. biological-based differences in both ribosomal transcript (rRNA) and gene (DNA) sequence community analysis. Based on in vitro tests, a protocol was adopted for the analysis of the genetic and metabolic pool (DNA vs. rRNA) of air and surface microbiomes within a residential setting. RESULTS: We observed differences in DNA/RNA co-extraction efficiency for individual microbes, but overall, a greater recovery of rRNA using FastPrep (> 50%). Samples stored with various preservation methods at - 80°C experienced a rapid decline in nucleic acid recovery starting within the first week, although post-extraction rRNA had no significant degradation when treated with RNAStable. We recommend that co-extraction samples be processed as quickly as possible after collection. The in vivo analysis revealed significant differences in the two components (genetic and metabolic pool) in terms of taxonomy, community structure, and microbial association networks. Rare taxa present in the genetic pool showed higher metabolic potential (RNA:DNA ratio), whereas commonly detected taxa of outdoor origins based on DNA sequencing, especially taxa of the Sphingomonadales order, were present in lower relative abundances in the viable community. CONCLUSIONS: Although methodological variations in sample preparations are high, large differences between the DNA and RNA fractions of the total microbial community demonstrate that direct examination of rRNA isolated from a residential BE microbiome has the potential to identify the more likely viable or active portion of the microbial community. In an environment that has primarily dead and metabolically inactive cells, we suggest that the rRNA fraction of BE samples is capable of providing a more ecologically relevant insight into the factors that drive indoor microbial community dynamics.


Subject(s)
Built Environment , Environmental Microbiology , Metabolomics , Metagenomics , Microbiota , Humans , Metabolomics/methods , Metagenomics/methods , Phylogeny , RNA, Ribosomal, 16S/genetics
5.
Microbiome ; 5(1): 86, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28810907

ABSTRACT

While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.


Subject(s)
Bacteria/isolation & purification , Bacterial Physiological Phenomena , Ecosystem , Microbial Viability , Biomass , High-Throughput Nucleotide Sequencing , Humans , Metagenomics/methods , Microbial Consortia , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
6.
Int J Mol Sci ; 14(9): 18572-98, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24022691

ABSTRACT

Biological wastewater treatment (WWT) frequently relies on biofilms for the removal of anthropogenic contaminants. The use of inert carrier materials to support biofilm development is often required, although under certain operating conditions microorganisms yield structures called granules, dense aggregates of self-immobilized cells with the characteristics of biofilms maintained in suspension. Molecular techniques have been successfully applied in recent years to identify the prokaryotic communities inhabiting biofilms in WWT plants. Although methanogenic Archaea are widely acknowledged as key players for the degradation of organic matter in anaerobic bioreactors, other biotechnological functions fulfilled by Archaea are less explored, and research on their significance and potential for WWT is largely needed. In addition, the occurrence of biofilms in WWT plants can sometimes be a source of operational problems. This is the case for membrane bioreactors (MBR), an advanced technology that combines conventional biological treatment with membrane filtration, which is strongly limited by biofouling, defined as the undesirable accumulation of microbial biofilms and other materials on membrane surfaces. The prevalence and spatial distribution of archaeal communities in biofilm-based WWT as well as their role in biofouling are reviewed here, in order to illustrate the significance of this prokaryotic cellular lineage in engineered environments devoted to WWT.


Subject(s)
Archaea/metabolism , Biofilms , Waste Disposal, Fluid/methods , Bioreactors , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL