Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38607332

ABSTRACT

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Subject(s)
Alzheimer Disease , Brain , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, sigma , Sigma-1 Receptor , Receptors, sigma/metabolism , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Brain/diagnostic imaging , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Mice , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Male , Molecular Imaging/methods , Halogenation , Tissue Distribution , Humans
2.
Mol Neurodegener ; 19(1): 18, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38365827

ABSTRACT

It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aß deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aß amyloidosis in the 5XFAD mouse model that were treated at a point when Aß burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aß amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aß burden was detectable upto 12 weeks of age when Aß burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aß burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-ß deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aß deposition or when given after Aß deposition is already at higher levels.


Subject(s)
Alzheimer Disease , Amyloidosis , Gastrointestinal Microbiome , Humans , Mice , Male , Female , Animals , Alzheimer Disease/metabolism , Microglia/metabolism , Mice, Transgenic , Amyloidosis/metabolism , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Disease Models, Animal
3.
Sci Rep ; 14(1): 1827, 2024 01 21.
Article in English | MEDLINE | ID: mdl-38246956

ABSTRACT

It is well-established that women are disproportionately affected by Alzheimer's disease. The mechanisms underlying this sex-specific disparity are not fully understood, but several factors that are often associated-including interactions of sex hormones, genetic factors, and the gut microbiome-likely contribute to the disease's etiology. Here, we have examined the role of sex hormones and the gut microbiome in mediating Aß amyloidosis and neuroinflammation in APPPS1-21 mice. We report that postnatal gut microbiome perturbation in female APPPS1-21 mice leads to an elevation in levels of circulating estradiol. Early stage ovariectomy (OVX) leads to a reduction of plasma estradiol that is correlated with a significant alteration of gut microbiome composition and reduction in Aß pathology. On the other hand, supplementation of OVX-treated animals with estradiol restores Aß burden and influences gut microbiome composition. The reduction of Aß pathology with OVX is paralleled by diminished levels of plaque-associated microglia that acquire a neurodegenerative phenotype (MGnD-type) while estradiol supplementation of OVX-treated animals leads to a restoration of activated microglia around plaques. In summary, our investigation elucidates the complex interplay between sex-specific hormonal modulations, gut microbiome dynamics, metabolic perturbations, and microglial functionality in the pathogenesis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Male , Female , Humans , Animals , Mice , Microglia , Amyloidogenic Proteins , Estradiol , Plaque, Amyloid
4.
Adv Sci (Weinh) ; 11(1): e2304545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990786

ABSTRACT

Histone deacetylase 6 (HDAC6) is one of the key histone deacetylases (HDACs) that regulates various cellular functions including clearance of misfolded protein and immunological responses. Considerable evidence suggests that HDAC6 is closely related to amyloid and tau pathology, the two primary hallmarks of Alzheimer's disease (AD). It is still unclear whether HDAC6 expression changes with amyloid deposition in AD during disease progression or HDAC6 may be regulating amyloid phagocytosis or neuroinflammation or other neuropathological changes in AD. In this work, the pathological accumulation of HDAC6 in AD brains over age as well as the relationship of its regulatory activity - with amyloid pathogenesis and pathophysiological alterations is aimed to be enlightened using the newly developed HDAC6 inhibitor (HDAC6i) PB118 in microglia BV2 cell and 3D-AD human neural culture model. Results suggest that the structure-based rational design led to biologically compelling HDAC6i PB118 with multiple mechanisms that clear Aß deposits by upregulating phagocytosis, improve tubulin/microtubule network by enhancing acetyl α-tubulin levels, regulate different cytokines and chemokines responsible for inflammation, and significantly reduce phospho-tau (p-tau) levels associated with AD. These findings indicate that HDAC6 plays key roles in the pathophysiology of AD and potentially serves as a suitable pharmacological target through chemical biology-based drug discovery in AD.


Subject(s)
Alzheimer Disease , Humans , Histone Deacetylase 6 , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Tubulin/metabolism
5.
Eur J Med Chem ; 254: 115327, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37098307

ABSTRACT

Targeting histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic approach for anti-inflammation and related biological pathways, including inflammatory events associated with the brain. In this study, in order to develop brain-permeable HDAC6 inhibitors for anti-neuroinflammation, we report here the design, synthesis, and characterization of a number of N-heterobicyclic analogues that can inhibit HDAC6 with high specificity and strong potency. Among our analogues, PB131 exhibits potent binding affinity and selectivity against HDAC6, with an IC50 value of 1.8 nM and more than 116-fold selectivity over other HDAC isoforms. In addition, PB131 shows good brain penetration, binding specificity, and reasonable biodistribution through our positron emission tomography (PET) imaging studies of [18F]PB131 in mice. Furthermore, we characterized the efficacy of PB131 on regulating neuroinflammation using the mouse microglia model BV2 cells in vitro and the LPS-induced inflammation mouse model in vivo. These data not only indicate the anti-inflammatory activity of our novel HDAC6 inhibitor PB131, but also strengthen the biological functions of HDAC6 and further extend the therapeutic approach inhibiting HDAC6. Our findings show that PB131 displays good brain permeability, high specificity, and strong potency toward inhibiting HDAC6 and is a potential HDAC6 inhibitor for inflammation-related disease treatment, especially neuroinflammation.


Subject(s)
Brain , Histone Deacetylase Inhibitors , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Brain/metabolism , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemistry , Tissue Distribution
6.
Acta Pharm Sin B ; 12(10): 3891-3904, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213537

ABSTRACT

Although the epigenetic regulatory protein histone deacetylase 6 (HDAC6) has been recently implicated in the etiology of Alzheimer's disease (AD), little is known about the role of HDAC6 in the etiopathogenesis of AD and whether HDAC6 can be a potential therapeutic target for AD. Here, we performed positron emission tomography (PET) imaging in combination with histopathological analysis to better understand the underlying pathomechanisms of HDAC6 in AD. We first developed [18F]PB118 which was demonstrated as a valid HDAC6 radioligand with excellent brain penetration and high specificity to HDAC6. PET studies of [18F]PB118 in 5xFAD mice showed significantly increased radioactivity in the brain compared to WT animals, with more pronounced changes identified in the cortex and hippocampus. The translatability of this radiotracer for AD in a potential human use was supported by additional studies, including similar uptake profiles in non-human primates, an increase of HDAC6 in AD-related human postmortem hippocampal tissues by Western blotting protein analysis, and our ex vivo histopathological analysis of HDAC6 in postmortem brain tissues of our animals. Collectively, our findings show that HDAC6 may lead to AD by mechanisms that tend to affect brain regions particularly susceptible to AD through an association with amyloid pathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...