Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11941, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789490

ABSTRACT

The emergence of newer SARS-CoV-2 variants of concern (VOCs) profoundly changed the ICU demography; this shift in the virus's genotype and its correlation to lethality in the ICUs is still not fully investigated. We aimed to survey ICU patients' clinical and laboratory parameters in correlation with SARS-CoV-2 variant genotypes to lethality. 503 COVID-19 ICU patients were included in our study beginning in January 2021 through November 2022 in Hungary. Furthermore, we implemented random forest (RF) as a potential predictor regarding SARS-CoV-2 lethality among 649 ICU patients in two ICU centers. Survival analysis and comparison of hypertension (HT), diabetes mellitus (DM), and vaccination effects were conducted. Logistic regression identified DM as a significant mortality risk factor (OR: 1.55, 95% CI 1.06-2.29, p = 0.025), while HT showed marginal significance. Additionally, vaccination demonstrated protection against mortality (p = 0.028). RF detected lethality with 81.42% accuracy (95% CI 73.01-88.11%, [AUC]: 91.6%), key predictors being PaO2/FiO2 ratio, lymphocyte count, and chest Computed Tomography Severity Score (CTSS). Although a smaller number of patients require ICU treatment among Omicron cases, the likelihood of survival has not proportionately increased for those who are admitted to the ICU. In conclusion, our RF model supports more effective clinical decision-making among ICU COVID-19 patients.


Subject(s)
COVID-19 , Intensive Care Units , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/epidemiology , COVID-19/virology , Intensive Care Units/statistics & numerical data , Hungary/epidemiology , Male , Female , Middle Aged , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Aged , Algorithms , Risk Factors , Adult , Hypertension/epidemiology , Random Forest
2.
J Neurosci ; 43(18): 3245-3258, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36948583

ABSTRACT

Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aßδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.


Subject(s)
Spinal Cord Dorsal Horn , Spinal Cord , Female , Male , Rats , Animals , Pain , Nerve Fibers, Unmyelinated/physiology , Interneurons , Nociceptors/physiology , Neurons, Afferent/physiology , Afferent Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...