Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 26(6): 1557-1575, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28052431

ABSTRACT

Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small-effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine-spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL-mapping approaches based on a de-biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL-mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single-locus analyses of an F2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1-6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small-effect loci. Apart from suggesting moderately heritable (h2  ≈ 0.15-0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL-mapping approach developed here has distinctive advantages over the traditional QTL-mapping methods in analyses of dense marker panels.


Subject(s)
Brain , Chromosome Mapping , Multilocus Sequence Typing , Smegmamorpha/genetics , Animals , Genomics/methods , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait Loci
2.
Front Zool ; 12: 38, 2015.
Article in English | MEDLINE | ID: mdl-26705404

ABSTRACT

BACKGROUND: Plasticity in brain size and the size of different brain regions during early ontogeny is known from many vertebrate taxa, but less is known about plasticity in the brains of adults. In contrast to mammals and birds, most parts of a fish's brain continue to undergo neurogenesis throughout adulthood, making lifelong plasticity in brain size possible. We tested whether maturing adult three-spined sticklebacks (Gasterosteus aculeatus) reared in a stimulus-poor environment exhibited brain plasticity in response to environmental enrichment, and whether these responses were sex-specific, thus altering the degree of sexual size dimorphism in the brain. RESULTS: Relative sizes of total brain and bulbus olfactorius showed sex-specific responses to treatment: males developed larger brains but smaller bulbi olfactorii than females in the enriched treatment. Hence, the degree of sexual size dimorphism (SSD) in relative brain size and the relative size of the bulbus olfactorius was found to be environment-dependent. Furthermore, the enriched treatment induced development of smaller tecta optica in both sexes. CONCLUSIONS: These results demonstrate that adult fish can alter the size of their brain (or brain regions) in response to environmental stimuli, and these responses can be sex-specific. Hence, the degree of SSD in brain size can be environment-dependent, and our results hint at the possibility of a large plastic component to SSD in stickleback brains. Apart from contributing to our understanding of the processes shaping and explaining variation in brain size and the size of different brain regions in the wild, the results show that provision of structural complexity in captive environments can influence brain development. Assuming that the observed plasticity influences fish behaviour, these findings may also have relevance for fish stocking, both for economical and conservational purposes.

3.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26108633

ABSTRACT

The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h(2) = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.


Subject(s)
Biological Evolution , Brain/anatomy & histology , Genetic Variation , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animals , Female , Male , Organ Size
4.
Ecol Evol ; 3(8): 2751-64, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24567837

ABSTRACT

The brain is a trait of central importance for organismal performance and fitness. To date, evolutionary studies of brain size variation have mainly utilized comparative methods applied at the level of species or higher taxa. However, these studies suffer from the difficulty of separating causality from correlation. In the other extreme, studies of brain plasticity have focused mainly on within-population patterns. Between these extremes lie interpopulational studies, focusing on brain size variation among populations of the same species that occupy different habitats or selective regimes. These studies form a rapidly growing field of investigations which can help us to understand brain evolution by providing a test bed for ideas born out of interspecific studies, as well as aid in uncovering the relative importance of genetic and environmental factors shaping variation in brain size and architecture. Aside from providing the first in depth review of published intraspecific studies of brain size variation, we discuss the prospects embedded with interpopulational studies of brain size variation. In particular, the following topics are identified as deserving further attention: (i) studies focusing on disentangling the contributions of genes, environment, and their interactions on brain variation within and among populations, (ii) studies applying quantitative genetic tools to evaluate the relative importance of genetic and environmental factors on brain features at different ontogenetic stages, (iii) apart from utilizing simple gross estimates of brain size, future studies could benefit from use of neuroanatomical, neurohistological, and/or molecular methods in characterizing variation in brain size and architecture. Evolution of brain size and architecture is a widely studied topic. However, the majority of studies are interspecific and comparative. Here we summarize the recently growing body of intraspecific studies based on population comparisons and outline the future potential in this approach.

5.
Biol Lett ; 8(2): 249-52, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-21957092

ABSTRACT

Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks (Pungitius pungitius) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial experiment, manipulating perceived predatory risk and food supply to see (i) if the treatments affected brain development and (ii) if there was population differentiation in the response to treatments. We detected differences in plasticity of the bulbus olfactorius (chemosensory centre) between habitats: marine fish were not plastic, whereas pond fish had larger bulbi olfactorii in the presence of perceived predation. Marine fish had larger bulbus olfactorius overall. Irrespective of population origin, the hypothalamus was smaller in the presence of perceived predatory risk. Our results demonstrate that perceived predation risk can influence brain development, and that the effect of an environmental factor on brain development may depend on the evolutionary history of a given population in respect to this environmental factor.


Subject(s)
Brain/anatomy & histology , Ecosystem , Food Chain , Smegmamorpha/anatomy & histology , Adaptation, Physiological , Animals , Biological Evolution , Brain/growth & development , Female , Finland , Linear Models , Male , Olfactory Perception , Random Allocation , Smegmamorpha/genetics , Smegmamorpha/growth & development , Sweden
6.
PLoS One ; 6(12): e28859, 2011.
Article in English | MEDLINE | ID: mdl-22194929

ABSTRACT

Due to its influence on body size, timing of maturation is an important life-history trait in ectotherms with indeterminate growth. Comparison of patterns of growth and maturation within and between two populations (giant vs. normal sized) of nine-spined sticklebacks (Pungitius pungitius) in a breeding experiment revealed that the difference in mean adult body size between the populations is caused by differences in timing of maturation, and not by differential growth rates. The fish in small-sized population matured earlier than those from large-sized population, and maturation was accompanied by a reduction in growth rate in the small-sized population. Males matured earlier and at smaller size than females, and the fish that were immature at the end of the experiment were larger than those that had already matured. Throughout the experimental period, body size in both populations was heritable (h(2) = 0.10-0.64), as was the timing of maturation in the small-sized population (h(2) = 0.13-0.16). There was a significant positive genetic correlation between body size and timing of maturation at 140 DAH, but not earlier (at 80 or 110 DAH). Comparison of observed body size divergence between the populations revealed that Q(ST) exceeded F(ST) at older ages, indicating adaptive basis for the observed divergence. Hence, the results suggest that the body size differences within and between populations reflect heritable genetic differences in the timing of maturation, and that the observed body size divergence is adaptive.


Subject(s)
Body Size/genetics , Sexual Maturation/genetics , Smegmamorpha/growth & development , Smegmamorpha/genetics , Animals , Female , Genetics, Population , Inheritance Patterns/genetics , Male , Microsatellite Repeats/genetics , Quantitative Trait, Heritable , Sex Characteristics , Time Factors
7.
Oecologia ; 167(2): 435-43, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21479961

ABSTRACT

Age and size at maturation are important correlates of fitness in many organisms and understanding how these are influenced by environmental conditions is therefore required to predict populations' responses to environmental changes. In ectotherms, growth and maturation are closely linked to temperature, but nonetheless it is often unclear how temperature-induced variation in growth and temperature per se translate to the process of maturation. Here, we test this explicitly with a common garden experiment using nine-spined sticklebacks (Pungitius pungitius). We reared fish in 14 and 17°C and recorded high resolution growth trajectories and the timing of maturation on an individual basis. To characterize the growth of each individual, we fitted a von Bertalanffy growth curve to each measured growth trajectory, so that the three parameters of the curve provided a summary of an individual's growth. Temperature treatments induced changes in both the growth parameters and the age at maturation. In females, changes in the age of maturation were encompassed by variations in growth, whereas in males there was a temperature-related shift in the age at maturation that was unrelated to growth. Our experiment demonstrates that temperature can affect maturation directly, and not only through temperature-induced changes in growth. Therefore, one cannot predict, on the basis of growth only, how changes in temperature might alter age and size at maturation and the subsequent reproduction.


Subject(s)
Sexual Maturation , Smegmamorpha/physiology , Adaptation, Physiological , Animals , Body Size , Female , Finland , Male , Models, Biological , Sex Characteristics , Smegmamorpha/growth & development , Temperature
8.
BMC Evol Biol ; 11: 75, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21435215

ABSTRACT

BACKGROUND: Most evolutionary studies on the size of brains and different parts of the brain have relied on interspecific comparisons, and have uncovered correlations between brain architecture and various ecological, behavioural and life-history traits. Yet, similar intraspecific studies are rare, despite the fact that they could better determine how selection and phenotypic plasticity influence brain architecture. We investigated the variation in brain size and structure in wild-caught nine-spined sticklebacks (Pungitius pungitius) from eight populations, representing marine, lake, and pond habitats, and compared them to data from a previous common garden study from a smaller number of populations. RESULTS: Brain size scaled hypo-allometrically with body size, irrespective of population origin, with a common slope of 0.5. Both absolute and relative brain size, as well as relative telencephalon, optic tectum and cerebellum size, differed significantly among the populations. Further, absolute and relative brain sizes were larger in pond than in marine populations, while the telencephalon tended to be larger in marine than in pond populations. These findings are partly incongruent with previous common garden results. A direct comparison between wild and common garden fish from the same populations revealed a habitat-specific effect: pond fish had relatively smaller brains in a controlled environment than in the wild, while marine fish were similar. All brain parts were smaller in the laboratory than in the wild, irrespective of population origin. CONCLUSION: Our results indicate that variation among populations is large, both in terms of brain size and in the size of separate brain parts in wild nine-spined sticklebacks. However, the incongruence between the wild and common garden patterns suggests that much of the population variation found in the wild may be attributable to environmentally induced phenotypic plasticity. Given that the brain is among the most plastic organs in general, the results emphasize the view that common garden data are required to draw firm evolutionary conclusions from patterns of brain size variability in the wild.


Subject(s)
Brain/anatomy & histology , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animals , Biological Evolution , Ecosystem , Organ Size , Smegmamorpha/physiology
9.
J Anim Ecol ; 79(3): 581-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20202005

ABSTRACT

1. Allometric scaling of sexual size dimorphism (SSD) with body size is a commonplace occurrence in intraspecific or interspecific comparisons. Typically, SSD increases with body size when males, and decreases when females are the larger sex--a pattern known as Rensch's rule. Intraspecific studies of Rensch's rule in vertebrates are extremely scarce. 2. In an allometric SSD-body size relationship, the sex with the larger body size variation is the driver of size divergence whereas the other sex is following it owing to correlational selection. Hence, one can test which sex is responsible for the observed body size divergence within this framework. 3. Nine-spined stickleback (Pungitius pungitius) provides an excellent model to study intraspecific variation in SSD owing to the large interpopulation variation in mean body size. Using data on body size variation in 11 nine-spined stickleback populations covering the full known size range of the species, we investigated: (i) whether variation in SSD scales allometrically with mean body size across the populations; (ii) which sex is driving the allometric relationship and (iii) whether the observed pattern is likely to have a genetic component. In addition, we analysed the size dependency of female reproductive output. 4. We found strong support for an inverse of Rensch's rule: level of female-biased SSD increased with increasing mean size while females were the more variable sex. Results from a common garden experiment supported the pattern found in the wild. Females from giant populations had 2-3 times larger reproductive output than normal-sized females. 5. The fact that females were the more variable sex indicates that the evolution of gigantism in nine-spined sticklebacks is driven by females, and the 2-3 times larger reproductive output per clutch of giant vs. normal-sized females suggests fecundity selection to have an important role in it. Our results oppose the commonly held view that males drive the evolution of SSD as a result of sexual selection favouring larger males.


Subject(s)
Body Size/genetics , Body Size/physiology , Sex Characteristics , Smegmamorpha/genetics , Smegmamorpha/physiology , Animals , Demography , Female , Male , Reproduction
10.
Evolution ; 63(12): 3190-200, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19624722

ABSTRACT

The relaxation of predation and interspecific competition are hypothesized to allow evolution toward "optimal" body size in island environments, resulting in the gigantism of small organisms. We tested this hypothesis by studying a small teleost (nine-spined stickleback, Pungitius pungitius) from four marine and five lake (diverse fish community) and nine pond (impoverished fish community) populations. In line with theory, pond fish tended to be larger than their marine or lake conspecifics, sometimes reaching giant sizes. In two geographically independent cases when predatory fish had been introduced into ponds, fish were smaller than those in nearby ponds lacking predators. Pond fish were also smaller when found in sympatry with three-spined stickleback (Gasterosteus aculeatus) than those in ponds lacking competitors. Size-at-age analyses demonstrated that larger size in ponds was achieved by both increased growth rates and extended longevity of pond fish. Results from a common garden experiment indicate that the growth differences had a genetic basis: pond fish developed two to three times higher body mass than marine fish during 36 weeks of growth under similar conditions. Hence, reduced risk of predation and interspecific competition appear to be chief forces driving insular body size evolution toward gigantism.


Subject(s)
Biological Evolution , Gigantism/genetics , Smegmamorpha/genetics , Animals , Fresh Water , Predatory Behavior , Seawater , Selection, Genetic , Smegmamorpha/growth & development , Smegmamorpha/physiology
11.
Proc Biol Sci ; 276(1664): 2085-92, 2009 Jun 07.
Article in English | MEDLINE | ID: mdl-19324759

ABSTRACT

The influence of environmental complexity on brain development has been demonstrated in a number of taxa, but the potential influence of social environment on neural architecture remains largely unexplored. We investigated experimentally the influence of social environment on the development of different brain parts in geographically and genetically isolated and ecologically divergent populations of nine-spined sticklebacks (Pungitius pungitius). Fish from two marine and two pond populations were reared in the laboratory from eggs to adulthood either individually or in groups. Group-reared pond fish developed relatively smaller brains than those reared individually, but no such difference was found in marine fish. Group-reared fish from both pond and marine populations developed larger tecta optica and smaller bulbi olfactorii than individually reared fish. The fact that the social environment effect on brain size differed between marine and pond origin fish is in agreement with the previous research, showing that pond fish pay a high developmental cost from grouping while marine fish do not. Our results demonstrate that social environment has strong effects on the development of the stickleback brain, and on the brain's sensory neural centres in particular. The potential adaptive significance of the observed brain-size plasticity is discussed.


Subject(s)
Adaptation, Physiological , Brain/anatomy & histology , Environment , Smegmamorpha/physiology , Animals , Organ Size , Smegmamorpha/anatomy & histology , Smegmamorpha/growth & development , Social Behavior
12.
Oecologia ; 155(1): 1-10, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17985159

ABSTRACT

Huey and Slatkin's (Q Rev Biol 51:363-384, 1976) cost-benefit model of lizard thermoregulation predicts variation in thermoregulatory strategies (from active thermoregulation to thermoconformity) with respect to the costs and benefits of the thermoregulatory behaviour and the thermal quality of the environment. Although this framework has been widely employed in correlative field studies, experimental tests aiming to evaluate the model are scarce. We conducted laboratory experiments to see whether the common lizard Zootoca vivipara, an active and effective thermoregulator in the field, can alter its thermoregulatory behaviour in response to differences in perceived predation risk and food supply in a constant thermal environment. Predation risk and food supply were represented by chemical cues of a sympatric snake predator and the lizards' food in the laboratory, respectively. We also compared males and postpartum females, which have different preferred or "target" body temperatures. Both sexes thermoregulated actively in all treatments. We detected sex-specific differences in the way lizards adjusted their accuracy of thermoregulation to the treatments: males were less accurate in the predation treatment, while no such effects were detected in females. Neither sex reacted to the food treatment. With regard to the two main types of thermoregulatory behaviour (activity and microhabitat selection), the treatments had no significant effects. However, postpartum females were more active than males in all treatments. Our results further stress that increasing physiological performance by active thermoregulation has high priority in lizard behaviour, but also shows that lizards can indeed shift their accuracy of thermoregulation in response to costs with possible immediate negative fitness effects (i.e. predation-caused mortality).


Subject(s)
Body Temperature Regulation , Food Supply , Lizards/physiology , Predatory Behavior , Animal Feed , Animals , Body Weight , Circadian Rhythm , Female , Male , Motor Activity
SELECTION OF CITATIONS
SEARCH DETAIL
...