Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Technol ; : 1-16, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972300

ABSTRACT

Calotropis procera fibres have been proposed for free-phase diesel removal in case of spillage into groundwater. For this, characterizations were carried out using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FEG-SEM), wettability and contact angle measurements. Sorption oil capacity, kinetic, isothermal and recycling behaviour were evaluated. For initial optimization of the oil sorption capacity, an experimental design (DOE) was applied, with the optimized condition being 60 g L-1 of diesel in water and 0.01 g of fibre. Then, the results clearly indicated that the fibres have a hydrophobic and oleophilic character, quickly reaching more than 71.43 g g-1 of diesel sorption, according to the adjustment (R² > 0.99) of the pseudo-second order and Langmuir models, governed by absorption mechanisms. It should also be noted that at the end of 8 reuse cycles, the fibre presented a total accumulated sorption capacity of about 252.6 g g-1 of diesel. Furthermore, a laboratory-scale experiment was carried out to remove diesel from groundwater in gas station areas, the fibre removed 98.55% to 99.97% of removal efficiencies were achieved of the free phase over time. Therefore, the material demonstrates excellent characteristics for removing diesel spills in groundwater due to its fast, high and stable removal capacity.

2.
RSC Adv ; 13(50): 35755-35765, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38090624

ABSTRACT

There is a growing concern with waste minimization and the promotion of the circular economy. Within this framework, using membrane-equipped electrochemical systems, the electrochemical oxidation (EO) of organic compounds and simultaneous hydrogen (H2) production can considerably improve the sustainability and economic viability of this process. Here, we propose an innovative-integrate electrochemical treatment strategy to maximize the economic benefits and sustainability of selectively producing organic acids and energy-saving H2 production from biomass platform compounds. The results clearly demonstrated that, on the one hand, more than 80 mg L-1 of oxalic acid was obtained in the anodic reservoir (using a boron-doped diamond electrode) with an alkaline medium (0.5 mol L-1 NaOH) by applying 100 mA cm-2 as well as vanillic acid production of 0.6795 mg L-1 under the same conditions. On the other hand, simultaneously green H2 production greater than 2.6 L was produced, in the cathodic compartment with a Ni-Fe-based mesh as cathode, with a 90% faradaic efficiency during the process. Thus, the electrochemical conversion of lignocellulosic biomass effluent into high-value-added products and an energy vector was sustainably accomplished, suggesting that it is a promising energy-saving and cost-effective integrated approach for biomass valorization using solar energy.

3.
RSC Adv ; 12(16): 10163-10176, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35424960

ABSTRACT

Catalytic pyrolysis of vegetable oil is one of the potential routes to convert oil to drop-in biofuels, known as renewable hydrocarbons. In this paper, we explored catalytic pyrolysis of coconut oil using SBA-15 impregnated with Ni in proportions of 1% to 5% to produce sustainable aviation fuel. The catalysts were synthesized, calcined and then characterized by XRD, FTIR, SEM, and EDS. In order to better understand the behavior of this process, thermal and kinetic studies were carried out by thermogravimetry. The TG curves of vegetable oil with (10%) and without catalysts were obtained at heating rates of 5, 15 and 20 °C min-1, in the temperature range between 30 and 600 °C. The kinetic parameters were calculated by the Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) methods. In the kinetic study, lower heat rates promoted higher conversions and the KAS model suits the process. The results calculated for the OC sample using the two kinetic models showed an increase in the E a energy as the conversion progressed to a certain point. Catalytic pyrolysis experiments were performed in a one-stage tubular reactor at 500 °C with a catalyst loading of 10 wt% on the basis of mass of oil. The catalyst with 5% Ni showed greater presence of hydrocarbons and greater formation of water, indicating that the deoxygenation process occurred through decarbonylation. With this, the present study was successful in the development of methodologies for obtaining hydrocarbons with a composition close to that of drop-in fuels, compared to the process carried out with vegetable oil in the absence of catalysts.

4.
Polymers (Basel) ; 13(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34641101

ABSTRACT

The objective of this study was to evaluate the Calotropis procera fiber treated with NaOH combined with heat treatment as sorbent material for removal of petroleum and derivatives in cases of oil spill. The effects of oil viscosity, fiber/oil contact time, and the type of sorption system (oil and oil/water) were evaluated by experimental planning. The fiber obtained was characterized by Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM-FEG), thermogravimetric analysis (TG/DTG), contact angle, and wettability. The fiber treated by combining NaOH and heat treatment (CPNaOHT) exhibited a large structure with an internal diameter of 42.99 ± 3.98 µm, roughness, and hydrophobicity on the surface with a contact angle of 101 ± 2°. The sorption capacity of oil ranged from 190.32 g/g to 98.9 g/g. After five cycles of recycling, the fiber still maintains about 70% of its initial sorption capacity and presented low liquid desorption (0.25 g). In this way, it can be used as an efficient sorbent to clean up spills of oil and oil products.

5.
RSC Adv ; 11(1): 555-564, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35423027

ABSTRACT

The present work aims to evaluate the potential of Al-MCM-41 and Ni/Al-MCM-41 catalysts for the production of renewable hydrocarbons through the fast pyrolysis of palm oil. Al-MCM-41 mesoporous material was synthesized by the hydrothermal route. The Ni/Al-MCM-41 catalyst was obtained by the wet impregnation method of the Al-MCM-41 material (support) previously synthesized with 2.3% metal in relation to the support mass. The thermal pyrolysis of palm oil yielded many oxygenated compounds with a very high molecular mass. The pyrolysis of the oil under the action of Al-MCM-41 presented greater selectivity when compared to thermal pyrolysis, obtaining 63% of hydrocarbons in the C11-C15 region. The catalytic pyrolysis of the oil with Ni/Al-MCM-41 showed a high deoxygenation rate, obtaining a hydrocarbon percentage equal to 78%, in addition to obtaining a percentage of hydrocarbons equal to 46% in the region of interest, viz., C11-C15, demonstrating the potential of the Ni/Al-MCM-41 catalyst for renewable hydrocarbons production (bio-jet fuel) from palm oil.

SELECTION OF CITATIONS
SEARCH DETAIL