Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(28): 30725-30736, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035899

ABSTRACT

In the current world, storing and converting energy without affecting the natural ecosystem are considered a sustainable and efficient green energy source production technology. Especially, using low-cost, environmentally friendly, and high-cycle stability activated carbon (AC) from the water hyacinth (Eichhornia crassipes) waste material for charge storage application is the current attractive strategy for renewable energy generation. In this study, preparation of AC from water hyacinth using a mixed chemical activation agent followed by activation time was optimized by the I-optimal coordinate exchange design model based on a 3-factor/3-level strategy under nine experimental runs. The optimum conditions to prepare AC were found to be potassium hydroxide (≈17 g) and potassium carbonate (≈11 g), and the carbonization time was approximately 1 h. Under these augmented conditions, the maximum specific capacitance suggested by the designed model was found to be ≈75.2 F/g. The regression coefficient (R 2 = 0.9979), adjusted (R 2 = 0.9917), predicted (R 2 = 0.8706), adequate precision (39.2795), and p-values (0.0062) proved the good correlation between actual and predicted values. The physicochemical and electrochemical properties of the final optimized AC were characterized by thermogravimetric/differential thermal analysis (TGA/DTA), X-ray diffractometry (XRD), Fourier transform infrared (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), and potentiostat (CV and EIS) instruments. Finally, the optimized AC electrode after 100 cycles at a current density of 2 A g-1 retains an efficiency of 71.57%, indicating the good stability and sustainability of this material.

2.
Micromachines (Basel) ; 15(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38675306

ABSTRACT

Molybdenum sulfide-oxide (MoS2, MS) emerges as the prime electrocatalyst candidate demonstrating hydrogen evolution reaction (HER) activity comparable to platinum (Pt). This study presents a facile electrochemical approach for fabricating a hybrid copper (Cu)/MoS2 (CMS) nanostructure thin-film electrocatalyst directly onto nickel foam (NF) without a binder or template. The synthesized CMS nanostructures were characterized utilizing energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical methods. The XRD result revealed that the Cu metal coating on MS results in the creation of an extremely crystalline CMS nanostructure with a well-defined interface. The hybrid nanostructures demonstrated higher hydrogen production, attributed to the synergistic interplay of morphology and electron distribution at the interface. The nanostructures displayed a significantly low overpotential of -149 mV at 10 mA cm-2 and a Tafel slope of 117 mV dec-1, indicating enhanced catalytic activity compared to pristine MoS2.This research underscores the significant enhancement of the HER performance and conductivity achieved by CMS, showcasing its potential applications in renewable energy.

3.
ACS Omega ; 8(15): 13775-13790, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091396

ABSTRACT

This study describes new electrocatalyst materials that can detect and reduce environmental pollutants. The synthesis and characterization of semiconductor nanocomposites (NCs) made from active ZrO2@S-doped g-C3N4 is presented. Electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) measurements were used to examine electron transfer characteristics of the synthesized samples. Using X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HR-SEM) techniques, inclusion of monoclinic ZrO2 on flower-shaped S-doped-g-C3N4 was visualized. High-resolution X-ray photoelectron spectroscopy (XPS) revealed successful doping of ZrO2 into the lattice of S-doped g-C3N4. The electron transport mechanism between the electrolyte and the fluorine tin-oxide electrode (FTOE) was enhanced by the synergistic interaction between ZrO2 and S-doped g-C3N4 as co-modifiers. Development of a platform with improved conductivity based on an FTOE modified with ZrO2@S-doped g-C3N4 NCs resulted in an ideal platform for the detection of 4-nitrophenol (4-NP) in water. The electrocatalytic activity of the modified electrode was evaluated through determination of 4-NP by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) under optimum conditions (pH 5). ZrO2@S-doped g-C3N4 (20%)/FTOE exhibited good electrocatalytic activity with a linear range from 10 to 100 µM and a low limit of detection (LOD) of 6.65 µM. Typical p-type semiconductor ZrO2@S-doped g-C3N4 NCs significantly impact the superior detection of 4-NP due to its size, shape, optical properties, specific surface area and effective separation of electron-hole pairs. We conclude that the superior electrochemical sensor behavior of the ZrO2@S-doped g-C3N4 (20%)/FTOE surfaces results from the synergistic interaction between S-doped g-C3N4 and ZrO2 surfaces that produce an active NC interface.

4.
J Phys Chem Lett ; 13(26): 6085-6092, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35759217

ABSTRACT

Porous core-shell nanoparticles (NPs) have emerged as a promising material for broad ranges of applications in catalysts, material chemistry, biology, and optical sensors. Using a typical Ag core-Fe3O4 shell NP, a.k.a., magnetoplasmonic (MagPlas) NP, two porous shell models were prepared: i.e., Ag@Fe3O4 NPs and its SiO2-covered NPs (Ag@Fe3O4@SiO2). We suggested using cyclic voltammetry (CV) to provide unprecedented insight into the porosity of the core-shell NPs caused by the applied potential, resulting in the selective redox activities of the core and porous shell components of Ag@Fe3O4 NPs and Ag@Fe3O4@SiO2 NPs at different cycles of CV. The porous and nonporous core-shell nanostructures were qualitatively and quantitatively determined by the electrochemical method. The ratio of the oxidation current peak (µA) of Ag to Ag+ in the porous shell to that in the SiO2 coated (nonporous) shell was 400:3.2. The suggested approach and theoretical background could be extended to other types of multicomponent NP complexes.


Subject(s)
Nanoparticles , Nanostructures , Catalysis , Nanoparticles/chemistry , Nanostructures/chemistry , Porosity , Silicon Dioxide/chemistry
5.
Bioinorg Chem Appl ; 2022: 5978707, 2022.
Article in English | MEDLINE | ID: mdl-35116062

ABSTRACT

Water pollution caused by various natural and artificial sources such as expansion of industrialization, rapid increment in population size, the threat of climate change, and development in urbanization takes a serious attention. Due to this fact, various protocols and techniques were adopted for the treatment of such polluted water. In the present findings, TiO2 nanoparticles (NPs) and TiO2/rGO nanocomposites (NCs) were synthesized using titanium tetra butoxide in the presence of Citrus sinensis (CS) and Musa acuminata (MA) peel waste extract as a capping, reducing, and stabilizing agent. The synthesized NPs and NCs were characterized using thermogravimetric-differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, ultraviolet diffuse reflectance spectroscopy (UV-DRS), and Fourier transform infrared (FTIR) spectroscopy. The synthesized NPs and NCs were investigated as green alternative photocatalyst for the degradation of methylene blue (MB) dye under visible light irradiation. Thermal analysis results confirmed that the green synthesized TiO2 NPs were found to be too stable above 550°C. XRD analysis result showed that the average crystalline size of CS and MA mediated synthesized TiO2 NPs with various volume ratios was in the range of 7.3-27.3 nm and 13.4-22.4 nm, respectively. The average crystalline size of CS and MA peel extract template synthesized TiO2/rGO NCs was found to be in the range of 7.5-15.3 and 11.2-12.5 nm, respectively. The band gap energy was calculated to be in the range of 3.17-3.29 eV and 3.10-3.38 eV for the CS and MA mediated synthesized TiO2 NPs, respectively. E g of CS and MA peel extract template formed TiO2/rGO NCs was found to be in the range of 2.85-3.11 eV and 3.07-3.11 eV, respectively. SEM analysis proved that the various synthesized TiO2 NPs and TiO2/rGO NCs were spherical in shape and the absence of any other foreign materials confirmed the purity of the corresponding nanocatalysts. In addition, TEM, HRTEM, and SAED analysis confirmed that the structures of the synthesized nanocatalysts were spherical in shape and the catalysts were too crystalline and the result was found to fit with the XRD result. Among the synthesized various volume ratios of TiO2 nanocatalysts, high percentage of degradation (62% and 58.2%) was achieved using TiO2-2c and TiO2-2 m, respectively. Moreover, 94.28% and 94.25% of MB degradation were achieved in the presence of TiO2/rGO-1.5c and TiO2/rGO-1.5c nanocomposite photocatalysts, respectively.

6.
Bioinorg Chem Appl ; 2021: 6626313, 2021.
Article in English | MEDLINE | ID: mdl-33777131

ABSTRACT

Water, one of the crucial and the pillar resources to every living thing, could be polluted day to day by different causes such as expansion in industrialization, rapid increment in population size, the threat of climate, and growth of urbanization. The existence of a number of organic dyes, detergents, and pesticides from industrial effluents could lead to severe diseases and even to the death of human beings. Currently, remediation of those hazardous organic contaminants using semiconductor metal oxide catalysts has received extensive attention in recent years. Among the numerous nanometal oxides, titanium oxide (TiO2) nanoparticles (NPs) have been well known as a significant photocatalytic material due to their suitable physiochemical behaviors such as stability, conductivity, high surface area to volume ratio, structure, and porosity nature at the nanoscale level. TiO2 semiconductor nanoparticles could be synthesized via several physiochemical approaches; among those, the biogenic technique is the most selective one which involves the synthesis of NPs using different templates. Biogenic synthesis of nanoparticles is an environmentally friendly protocol that involves the use of different parts and types of biogenic sources such as bacteria, fungi, yeast, virus, and green plants or the byproducts of their metabolism, which act as both reducing and stabilizing agents. TiO2 NPs obtained via the biogenic method provide a potential application for the degradation of organic dyes and other pollutants in wastewater. This method of synthesis of NPs has been given a great attention by researchers due to their nontoxicity, low cost, environmental friendliness, the usage of green solvents, and simplicity of the process. This review focuses on summarizing the synthesis of TiO2 NPs using various biogenic sources, characterization, and their photocatalytic applications for the degradation of different wastes and organic dyes from polluted water.

SELECTION OF CITATIONS
SEARCH DETAIL