Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 720: 150079, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759300

ABSTRACT

Stroke and major depression disorder are common neurological diseases, and a large number of clinical studies have shown that there is a close relationship between the two diseases, but whether the two diseases are linked at the genetic level needs to be further explored. The purpose of this study was to explore the comorbidity mechanism of stroke and major depression by using bioinformatics technology and animal experiments. From the GEO database, we gathered transcriptome data of stroke and depression mice (GSE104036, GSE131712, GSE81672, and GSE146845) and identified comorbid gene set through edgR and WGCNA analyses. Further analysis revealed that these genes were enriched in pathways associated with cell death. Programmed cell death gene sets (PCDGs) are generated from genes related to apoptosis, necroptosis, pyroptosis and autophagy. The intersection of PCDGs and comorbid gene set resulted in two hub genes, Mlkl and Nlrp3. Single-cell sequencing analysis indicated that Mlkl and Nlrp3 are mainly influential on endothelial cells and microglia, suggesting that the impairment of these two cell types may be a factor in the relationship between stroke and major depression. This was experimentally confirmed by RT-PCR and immunofluorescence staining. Our research revealed that two specific genes, namely, Mlkl and Nlrp3, play crucial roles in the complex mechanism that links stroke and major depression. Additionally, we have predicted six possible therapeutic agents and the outcomes of docking simulations of target proteins and drug molecules.


Subject(s)
Depressive Disorder, Major , Stroke , Animals , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Stroke/genetics , Stroke/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Male , Transcriptome , Computational Biology/methods , Apoptosis/genetics
2.
Aging Dis ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37196136

ABSTRACT

Post-transcriptional regulation and RNA-binding proteins (RBPs) play vital roles in the occurrence of secondary injury after intracerebral hemorrhage (ICH). Therefore, we identified RBPs distinctively expressed after ICH by screening and determined thioredoxin1 (Txn1) as one of the most distinctive RBPs. We employed an ICH model and in vitro experiments to investigate the role of Txn1 in ICH. Firstly, we found that Txn1 was mainly expressed in microglia and neurons in the central nervous system, and its expression was significantly reduced in perihematomal tissue. Additionally, adeno-associated virus (AAV) carrying Txn1 was injected into the ICH rat model. Our results showed that overexpression of Txn1 reduced secondary injury and improved outcome in the ICH rat model. Moreover, to understand the therapeutic mechanism of Txn1 after ICH, we performed RNA immunoprecipitation combined with high-throughput sequencing. The results showed that Txn1 binds to inflammation- and apoptosis-related mRNAs and affects gene expression through RNA splicing and translation. Finally, RNA pull-down assays and in vitro experiments confirmed that Txn1 binds to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), leading to reduced inflammation and apoptosis. Our study suggests that Txn1 is a potential therapeutic target for alleviating ICH-induced brain injury.

3.
ACS Biomater Sci Eng ; 8(10): 4462-4473, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36069708

ABSTRACT

Intracerebral transplantation of neural stem cells (NSCs) for ischemic stroke treatment has been demonstrated to be inefficient, with only <5% of delivered cells being retained. Microcapsules may be a good carrier for NSC delivery; however, the current microcapsules do not fully meet the demands for cell survival after transplantation. In the present study, we designed a strategy for the encapsulation of NSCs in a novel lipid-alginate (L-A) microcapsule based on a two-step method. The protective effect of a L-A microcapsule on oxygen-glucose deprivation (OGD) was investigated by using the CCK8 test, the LDH release test, and flow cytometry. Mechanisms underlying the prosurvival effect were investigated by detecting autophagy markers like P62, LC3-I, and LC3-II, and autophagy flux analysis was also performed. Lastly, the ability of the L-A microcapsule to support NSCs delivery for ischemic stroke was investigated in the middle cerebral artery occlusion (MCAO) model. We found that L-A microcapsules exerted a good protective effect against OGD compared with control and alginate microcapsules. The L-A microcapsules were found to promote cell survival by not only providing a "physical" barrier but also altering autophagy markers like P62 and LC3-II, which enhanced autophagy flux. This novel microcapsule was confirmed to be suitable for NSC delivery in vivo, which alleviated transplanted NSC apoptosis, reduced the infarct volume, decreased brain edema, improved neurological deficit scores, and lastly, improved survival rate. The findings of this study may provide a new method for stem cell delivery, raising the prospect that intracerebral cell transplantation may be used to treat, for instance, ischemic stroke, traumatic brain injury, and so on.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neural Stem Cells , Alginates/pharmacology , Animals , Autophagy , Brain Ischemia/therapy , Capsules/pharmacology , Glucose/pharmacology , Infarction , Lipids/pharmacology , Mice , Oxygen/pharmacology
4.
Front Neurosci ; 16: 920731, 2022.
Article in English | MEDLINE | ID: mdl-35911988

ABSTRACT

Background: The long-term outcomes of acute large vessel occlusion (LVO) in anterior circulation treated by endovascular treatment (EVT) remains to be determined. The aim of this study was to assess the 5-year outcomes of patients with LVO who underwent EVT. Methods: This study was an observational, nationwide registry of consecutive patients with acute LVO who received EVT in 28 comprehensive stroke centers in China. The primary outcome was the proportion of favorable outcome [modified Rankin Scale score (mRS) 0-2] at 5 years. Secondary outcomes included proportions of patients with excellent outcome (mRS 0-1), all-cause mortality and risk of stroke recurrence at 5 years. Results: A total of 807 patients were included into the study and had 90-day follow-up data, 657 patients had 5-year follow-up data. At 90 days, 218 patients (27.0%) had an excellent outcome, 349 patients (43.2%) had a favorable functional outcome. 199 patients (24.7%) died. At 5 years, 190 patients (28.9%) had an excellent outcome, 261 patients (39.7%) had a favorable functional outcome, 317 patients (48.2%) died and 129 (28.2%) had stroke recurrence. Because of missing 5-year follow-up data, among available 269 patients who achieved functional independence at 90 days, 208 (77.3%) maintained favorable outcome, 19 (7.1%) had disability (mRS 3-5) and 42 (15.6%) died at 5 years. Furthermore, among available 189 patients with mRS 3-5 at 90 days, 53 (28.0%) patients achieved favorable functional outcome, 60 (31.7%) patients maintained unfavorable functional outcome and 76 (40.2%) patients died within 5 years. Multivariate analyses identified that younger age [odds ratio (OR): 0.96; 95% CI, 0.93-0.99; P = 0.009], lower mRS at 90 days (OR: 0.15; 95% CI, 0.10-0.23; P < 0.001) and absence of stroke recurrence (OR: 0.001; 95% CI, 0.000-0.006; P < 0.001) were significantly associated with favorable outcome at 5 years. Advanced age (OR: 1.06, 95% CI, 1.04-1.08; P < 0.001), higher mRS at 90 days (OR: 0.84; 95% CI, 0.73-0.98; P = 0.021) and atrial fibrillation (OR: 1.63; 95% CI, 1.02-2.60; P = 0.04) were independent factors for stroke recurrence. Conclusion: Our results indicated that the beneficial effect of EVT in patients with acute LVO can be sustained during the course of at least 5 years. Reducing the risk of stroke recurrence by anticoagulation for atrial fibrillation may be a crucial strategy to improve long-term outcome.

5.
Front Neurosci ; 16: 639656, 2022.
Article in English | MEDLINE | ID: mdl-35495024

ABSTRACT

The contribution of histone mark redistribution to the age-induced decline of endogenous neuroprotection remains unclear. In this study, we used an intracerebral hemorrhage (ICH)-induced acute brain injury rat model to study the transcriptional and chromatin responses in 13- and 22-month-old rats. Transcriptome analysis (RNA-seq) revealed that the expression of neuroinflammation-associated genes was systematically upregulated in ICH rat brains, irrespective of age. Further, we found that interferon-γ (IFN-γ) response genes were activated in both 13- and 22-month-old rats. Anti-IFN-γ treatment markedly reduced ICH-induced acute brain injury in 22-month-old rats. At the chromatin level, ICH induced the redistribution of histone modifications in the promoter regions, especially H3K4me3 and H3K27me3, in neuroinflammation-associated genes in 13- and 22-month-old rats, respectively. Moreover, ICH-induced histone mark redistribution and gene expression were found to be correlated. Collectively, these findings demonstrate that histone modifications related to gene expression are extensively regulated in 13- and 22-month-old rats and that anti-IFN-γ is effective for ICH treatment, highlighting the potential of developing therapies targeting histone modifications to cure age-related diseases, including brain injury and neuroinflammation.

6.
Cell Mol Neurobiol ; 42(6): 1897-1908, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33712886

ABSTRACT

Neurons in the penumbra (the area surrounding ischemic tissue that consists of still viable tissue but with reduced blood flow and oxygen transport) may be rescued following stroke if adequate perfusion is restored in time. It has been speculated that post-stroke angiogenesis in the penumbra can reduce damage caused by ischemia. However, the mechanism for neovasculature formation in the brain remains unclear and vascular-targeted therapies for brain ischemia remain suboptimal. Here, we show that VEGFR1 was highly upregulated in pericytes after stroke. Knockdown of VEGFR1 in pericytes led to increased infarct area and compromised post-ischemia vessel formation. Furthermore, in vitro studies confirmed a critical role for pericyte-derived VEGFR1 in both endothelial tube formation and pericyte migration. Interestingly, our results show that pericyte-derived VEGFR1 has opposite effects on Akt activity in endothelial cells and pericytes. Collectively, these results indicate that pericyte-specific expression of VEGFR1 modulates ischemia-induced vessel formation and vascular integrity in the brain.


Subject(s)
Ischemic Stroke , Stroke , Cerebrovascular Circulation/physiology , Endothelial Cells/metabolism , Humans , Ischemia/metabolism , Perfusion , Pericytes , Stroke/metabolism
7.
Aging Dis ; 11(5): 1103-1115, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33014526

ABSTRACT

Circulating factors associated with aging have been shown to be involved in the development of age-related chronic and acute brain diseases. Here, we aimed to investigate the roles and mechanisms of CCL12, a circulating factor that is highly expressed in the plasma of aged rodents after intracerebral hemorrhage (ICH) using parabiosis and ICH models. Neurological deficit score (NDS), mortality rate, brain water content (BWC), and levels of inflammatory factors were determined to assess the degree of ICH-induced brain injury. Peripheral inflammatory cell infiltration was examined using immunofluorescence and flow cytometry. After confirming that acute brain injury after ICH was aggravated with age, we found that brain and plasma CCL12 levels were markedly higher in old mice than in young mice after ICH, and that plasma CCL12 was able to enter the brain. Using CCL12-/- mice, we showed that the degree of damage in the brain-as determined by NDS, mortality rate, BWC, levels of inflammatory factors, and numbers of degenerative and apoptotic neural cells and surviving neurons was significantly attenuated compared to that observed in old wild-type (WT) mice. These effects were reversed in CCL12-treated old mice. The detrimental effects caused by CCL12 may involve its ability to recruit macrophages and T cells. Finally, the administration of an anti-CCL12 antibody markedly improved the outcomes of ICH mice. Our results are the first to indicate that elevated peripheral CCL12 levels in old mice aggravates ICH-induced brain injury by recruiting macrophages and T cells. Thus, CCL12 may be a new target for ICH treatment.

8.
Front Neurosci ; 14: 777, 2020.
Article in English | MEDLINE | ID: mdl-33071720

ABSTRACT

Oxylipins are a series of bioactive lipid metabolites derived from polyunsaturated fatty acids that are involved in cerebral homeostasis and the development of intracerebral hemorrhage (ICH). However, comprehensive quantification of the oxylipin profile in ICH remains unknown. Therefore, an ICH mouse model was constructed and liquid chromatography tandem mass spectrometry was then performed to quantify the change in oxylipins in ICH. The expression of the oxylipin relative enzymes was also reanalyzed based on RNA-seq data from our constructed ICH dataset. A total of 58 oxylipins were quantifiable and the levels of 17 oxylipins increased while none decreased significantly in the first 3 days following ICH. The most commonly increased oxylipins in ICH were derived from AA (10/17) and EPA (4/17) followed by LA (2/17) and DHA (1/17). 18-HEPE from EPA was the only oxylipin that remained significantly increased from 0.5 to 3 days following ICH. Furthermore, 14 of the increased oxylipins reached a peak level on the first day of ICH, and soon decreased while five oxylipins (PGJ2, 15-oxo-ETE, 12-HEPE, 18-HEPE, and 5-oxo-ETE) had increased 3 days after ICH suggesting that the profile shifted with the progression of ICH. In our constructed RNA-seq dataset based on ICH rats, 90 oxylipin relative molecules were detected except for COX. Among these, Cyp4f18, Cyp1b1, Cyp2d3, Cyp2e1, Cyp1a1, ALOX5AP, and PLA2g4a were found up-regulated and Cyp26b1 was found to decrease in ICH. In addition, there was no significant change in sEH in ICH. This study provides fundamental data on the profile of oxylipins and their enzymes in ICH. We found that the profile shifted as the progression of ICH and the metabolism of arachidonic acid and eicosapentaenoic acid was highly affected in ICH, which will help further studies explore the functions of oxylipins in ICH.

9.
Front Neurosci ; 14: 181, 2020.
Article in English | MEDLINE | ID: mdl-32210752

ABSTRACT

RNA-binding proteins (RBPs) have been shown to be involved in posttranscriptional regulation, which plays an important role in the pathophysiology of intracerebral hemorrhage (ICH). Peroxiredoxin 1 (Prdx1), an RBP, plays an important role in regulating inflammation and apoptosis. On the basis that inflammation and apoptosis may contribute to ICH-induced brain injury, in this study, we used ICH models coupled with in vitro experiments, to investigate the role and mechanism of Prdx1 in regulating inflammation and apoptosis by acting as an RBP after ICH. We first found that Prdx1 was significantly up-regulated in response to ICH-induced brain injury and was mainly expressed in astrocytes and microglia in ICH rat brains. After overexpressing Prdx1 by injecting adeno-associated virus (AAV) into the striatum of rats at 3 weeks, we constructed ICH models and found that Prdx1 overexpression markedly reduced inflammation and apoptosis after ICH. Furthermore, RNA immunoprecipitation combined with high-throughput sequencing (RIP-seq) in vitro revealed that Prdx1 affects the stability of inflammation- and apoptosis-related mRNA, resulting in the inhibition of inflammation and apoptosis. Finally, overexpression of Prdx1 significantly alleviated the symptoms and mortality of rats subjected to ICH. Our results show that Prdx1 reduces ICH-induced brain injury by targeting inflammation- and apoptosis-related mRNA stability. Prdx1 may be an improved therapeutic target for alleviating the brain injury caused by ICH.

11.
Biosci Rep ; 39(5)2019 05 31.
Article in English | MEDLINE | ID: mdl-31040201

ABSTRACT

Aging has been shown to contribute to both the declined biofunctions of aging brain and aggravation of acute brain damage, and the former could be reversed by young plasma. These results suggest that young plasma treatment may also reduce the acute brain damage induced by intracerebral hemorrhage (ICH). In the present study, we first found that the administration of young plasma significantly reduced the mortality and neurological deficit score in aging ICH rodents, which might be due to the decreased brain water content, damaged neural cells, and increased survival neurons around the perihematomal brain tissues. Then, proteomics analysis was used to screen out the potential neuroprotective circulating factors and the results showed that many factors were changed in health human plasma among young, adult, and old population. Among these significantly changed factors, the plasma insulin-like growth factor 1 (IGF-1) level was significantly decreased with age, which was further confirmed both in human and rats detected by ELISA. Additionally, the brain IGF-1 protein level in aging ICH rats was markedly decreased when compared with young rats. Interestingly, the relative decreased brain IGF-1 level was reversed by the treatment of young plasma in aging ICH rats, while the mRNA level was non-significantly changed. Furthermore, the IGF-1 administration significantly ameliorated the acute brain injury in aging ICH rats. These results indicated that young circulating factors, like IGF-1, may enter brain tissues to exert neuroprotective effects, and young plasma may be considered as a novel therapeutic approach for the clinical treatment of aging-related acute brain injury.


Subject(s)
Aging/metabolism , Brain Injuries/metabolism , Brain/metabolism , Cerebral Hemorrhage/metabolism , Plasma/metabolism , Adult , Aged , Aging/drug effects , Animals , Brain/drug effects , Brain Injuries/drug therapy , Cerebral Hemorrhage/drug therapy , Disease Models, Animal , Female , Humans , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
12.
J Clin Neurosci ; 47: 269-272, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28988651

ABSTRACT

Intracranial arterial aneurysms (IAAs) are locally abnormal dilations of the cerebral arteries and often result in subarachnoid hemorrhages (SAH). Genetic, molecular and cellular mechanisms of sporadic IAAs forms are poorly understood. In this study, we investigate the association between mothers against decapentaplegic homolog 3 (SMAD3) genotypes and the risk of sporadic intracranial arterial aneurysms among the Chinese Han population. A case-control study was conducted examining 330 IAA patients and 313 controls. There were eight single nucleotide polymorphisms of SMAD3 selected and genotyped using the polymerase chain reaction-ligase detection reaction (PCR-LDR) method. Our results indicated that SMAD3 rs1065080 polymorphism was associated with a risk of IAAs in a codominant model (GA vs GG, OR=1.433; 95% CI 1.030-1.994; P=0.032). In summary, we observed that SMAD3 rs1065080 single nucleotide gene polymorphisms were significantly associated with patient susceptibility to IAAs.


Subject(s)
Genetic Predisposition to Disease/genetics , Intracranial Aneurysm/genetics , Smad3 Protein/genetics , Adult , Aged , Asian People/genetics , Case-Control Studies , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Risk
13.
Oncotarget ; 8(46): 80315-80324, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29113305

ABSTRACT

Inflammatory responses play crucial roles in cerebral ischemia/reperfusion injury. Toll-like receptor 4 (TLR4) is an important mediator of the neuroinflammatory response to cerebral ischemia/reperfusion injury. Vinpocetine is a derivative of the alkaloid vincamine and exerts an anti-inflammatory effect by inhibiting NF-κB activation. However, the effects of vinpocetine on pathways upstream of NF-κB signaling, such as TLR4, have not been fully elucidated. Here, we used mouse middle cerebral artery occlusion (MCAO) and cell-based oxygen-glucose deprivation (OGD) models to evaluate the therapeutic effects and mechanisms of vinpocetine treatment. The vinpocetine treatment significantly reduced mice cerebral infarct volumes and neurological scores. Moreover, the numbers of TUNEL+ and Fluoro-Jade B+ cells were significantly decreased in the ischemic brain tissues after vinpocetine treatment. In the OGD model, the vinpocetine treatment also increased the viability of cultured cortical neurons. Interestingly, vinpocetine exerted a neuroprotective effect on the mouse MCAO model and cell-based OGD model by inhibiting TLR4-mediated inflammatory responses and decreasing proinflammatory cytokine release through the MyD88-dependent signaling pathway, independent of TRIF signaling pathway. In conclusion, vinpocetine exerts anti-inflammatory effects to ameliorate cerebral ischemia/reperfusion injury in vitro and in vivo. Vinpocetine may inhibit inflammatory responses through the TLR4/MyD88/NF-κB signaling pathway, independent of TRIF-mediated inflammatory responses. Thus, vinpocetine may be an attractive therapeutic candidate for the treatment of ischemic cerebral injury or other inflammatory diseases.

14.
Biomed Res Int ; 2017: 5352071, 2017.
Article in English | MEDLINE | ID: mdl-28804718

ABSTRACT

The CD36 gene encodes a membrane glycoprotein (type B scavenger receptor, SR-B2) that plays a crucial role in lipid sensing, innate immunity, atherogenesis, and glycolipid metabolism. In this study, we aimed to investigate the association between CD36 gene polymorphisms and intracerebral hemorrhage (ICH) in a Han Chinese population. We performed genotype and allele analyses for eleven single nucleotide polymorphisms (SNPs) of CD36 in a case-controlled study involving 292 ICH patients and 298 control participants. Eleven SNPs were genotyped by the Improved Multiple Ligase Detection Reaction (iMLDR) method. The results indicated that the SNP rs1194182 values were significantly different between ICH group and control group in a dominant model after adjusting for confounding factors. The subgroup analysis conducted for rs1194182 showed that the allele G frequencies were significantly different between ICH patients and controls in hypertension group via a dominant model. We then analyzed the rs1194182 genotype distributions among different groups of the serum lipid groups, including BMI, TC, TG, HDL, and LDL. However, no significant differences were found in the analysis of other subgroups. Taken together, these findings indicate that rs1194182 polymorphism in the CD36 gene was associated with ICH, and genotype GG could be an independent predictor.


Subject(s)
Alleles , CD36 Antigens/genetics , Cerebral Hemorrhage/genetics , Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Aged , Asian People/ethnology , Cerebral Hemorrhage/ethnology , China/ethnology , Female , Humans , Male , Middle Aged
15.
J Am Heart Assoc ; 6(7)2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28724654

ABSTRACT

BACKGROUND: Blood-brain barrier (BBB) disruption aggravates brain injury induced by intracerebral hemorrhage (ICH); however, the mechanisms of BBB damage caused by ICH remain elusive. Mfsd2a (major facilitator superfamily domain containing 2a) has been known to play an essential role in BBB formation and function. In this study, we investigated the role and underlying mechanisms of Mfsd2a in BBB permeability regulation after ICH. METHODS AND RESULTS: Using ICH models, we found that Mfsd2a protein expression in perihematomal brain tissues was significantly decreased after ICH. Knockdown and knockout of Mfsd2a in mice markedly increased BBB permeability, neurological deficit score, and brain water contents after ICH, and these were rescued by overexpressing Mfsd2a in perihematomas. Moreover, we found that Mfsd2a regulation of BBB permeability after ICH correlated with changes in vesicle number. Expression profiling of tight junction proteins showed no differences in Mfsd2a knockdown, Mfsd2a knockout, and Mfsd2a overexpression mice. However, using electron microscopy following ICH, we observed a significant increase in pinocytotic vesicle number in Mfsd2a knockout mice and decreased the number of pinocytotic vesicles in mouse brains with Mfsd2a overexpression. Finally, using multiple reaction monitoring, we screened out 3 vesicle trafficking-related proteins (Srgap2, Stx7, and Sec22b) from 31 vesicle trafficking-related proteins that were markedly upregulated in Mfsd2a knockout mice compared with controls after ICH. CONCLUSIONS: In summary, our results suggest that Mfsd2a may protect against BBB injury by inhibiting vesicular transcytosis following ICH.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability , Cerebral Hemorrhage/metabolism , Endothelial Cells/metabolism , Membrane Transport Proteins/metabolism , Transcytosis , Transport Vesicles/metabolism , Animals , Behavior, Animal , Blood-Brain Barrier/ultrastructure , Carrier Proteins/metabolism , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/prevention & control , Disease Models, Animal , Endothelial Cells/ultrastructure , GTPase-Activating Proteins , Genetic Predisposition to Disease , Male , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Symporters , Tight Junctions/metabolism , Tight Junctions/ultrastructure , Time Factors , Transport Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...