Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Neural Eng ; 20(3)2023 06 01.
Article in English | MEDLINE | ID: mdl-37216935

ABSTRACT

Objective.Ultrasound has been shown to modulate the activity of retinal ganglion cells (RGCs) in mice, but the mechanism remains poorly understood. This study aims to address this question.Approach.Multi-electrode recordings together with pharmacological methods were used to investigate the possible cellular/circuitry mechanism(s) underlying the neuronal modulation induced by low-frequency (1 MHz), low-intensity (ISPTA0.5 W cm-2) ultrasound stimulation.Main results.We found that ultrasound activated mechanosensitive channels (transient receptor potential vanilloid 4 (TRPV4) channels are involved) in Müller cells, causing the release of glutamate, which acts on the extrasynapticN-methyl-D-aspartate receptors of RGCs, thus leading to the modulation of neuronal activity.Significance.Our results reveal a novel mechanism of low-frequency, low-intensity ultrasound modulation, involving TRPV4 as a mechanosensitive target for ultrasound and glutamate as an essential mediator of neuron-glia communication. These findings also demonstrate that the mechanical-force-mediated pathway is important for retinal signal modulation during visual processes, such as visual accommodation.


Subject(s)
Retina , TRPV Cation Channels , Mice , Animals , TRPV Cation Channels/metabolism , Retina/metabolism , Retinal Ganglion Cells/physiology , Neuroglia/metabolism , Glutamates/metabolism
2.
J Neural Eng ; 19(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35772385

ABSTRACT

Objective. Ultrasound modulates the firing activity of retinal ganglion cells (RGCs), but the effects of lower-frequency, lower-intensity ultrasound on RGCs and underlying mechanism(s) remain poorly understood. This study aims to address these questions.Approach. Multi-electrode recordings were used in this study to record the firing sequences of RGCs in isolated mouse retinas. RGCs' background firing activities as well as their light responses were recorded with or without ultrasound stimulation. Cross-correlation analyses were performed to investigate the possible cellular/circuitry mechanism(s) underlying ultrasound modulation.Main results. It was found that ultrasound stimulation of isolated mouse retina enhanced the background activity of ON-RGCs and OFF-RGCs. In addition, background ultrasound stimulation shortened the light response latency of both ON-RGCs and OFF-RGCs, while enhancing part of the RGCs' (both ON- and OFF-subtypes) light response and decreasing that of the others. In some ON-OFF RGCs, the ON- and OFF-responses of an individual cell were oppositely modulated by the ultrasound stimulation, which suggests that ultrasound stimulation does not necessarily exert its effect directly on RGCs, but rather via its influence on other type(s) of cells. By analyzing the cross-correlation between the firing sequences of RGC pairs, it was found that concerted activity occurred during ultrasound stimulation differed from that occurred during light stimulation, in both spatial and temporal aspects. These results suggest that the cellular circuits involved in ultrasound- and light-induced concerted activities are different and glial cells may be involved in the circuit in response to ultrasound.Significance. These findings demonstrate that ultrasound affects neuronal background activity and light responsiveness, which are critical for visual information processing. These results may also imply a hitherto unrecognized role of glial cell activation in the bidirectional modulation effects of RGCs and may be critical for the nervous system.


Subject(s)
Light , Retinal Ganglion Cells , Animals , Mice , Photic Stimulation , Retinal Ganglion Cells/physiology
3.
Neurosci Bull ; 34(6): 1007-1016, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30128691

ABSTRACT

Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABAA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg2+-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg2+-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 µmol/L of the GABAA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 µmol/L muscimol abolished all the epileptiform discharges. When the GABAA receptor antagonist bicuculline was applied at 10 µmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABAA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.


Subject(s)
Epilepsy/pathology , Hippocampus/metabolism , Hippocampus/physiopathology , Receptors, GABA-A/metabolism , Animals , Animals, Newborn , Bicuculline/pharmacology , Disease Models, Animal , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/therapeutic use , Hippocampus/drug effects , In Vitro Techniques , Magnesium/metabolism , Magnesium/pharmacology , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Muscimol/pharmacology , Nerve Net/drug effects
4.
Exp Eye Res ; 162: 97-103, 2017 09.
Article in English | MEDLINE | ID: mdl-28629926

ABSTRACT

In optic neuropathies, the progressive deterioration of retinal ganglion cell (RGC) function leads to irreversible vision loss. Increasing experimental evidence suggests differing susceptibility for RGC functional subtypes. Here with multi-electrode array recordings, RGC functional loss was characterized at multiple time points in a mouse model of optic nerve crush. Firing rate, latency of response and receptive field size were analyzed for ON, OFF and ON-OFF RGCs separately. It was observed that responses and receptive fields of OFF cells were impaired earlier than ON cells after the injury. For the ON-OFF cells, the OFF component of response was also more susceptible to optic nerve injury than the ON component. Moreover, more ON transient cells survived than ON sustained cells post the crush, implying a diversified vulnerability for ON cells. Together, these data support the contention that RGCs' functional degeneration in optic nerve injury is subtype dependent, a fact that needs to be considered when developing treatments of glaucomatous retinal ganglion cell degeneration and other optic neuropathies.


Subject(s)
Optic Nerve Injuries/physiopathology , Optic Nerve/pathology , Retinal Degeneration/etiology , Retinal Ganglion Cells/physiology , Animals , Cell Count , Cell Survival , Disease Models, Animal , Electroretinography , Male , Mice , Mice, Inbred C57BL , Optic Nerve/physiopathology , Optic Nerve Injuries/complications , Optic Nerve Injuries/pathology , Retinal Degeneration/pathology , Retinal Degeneration/physiopathology
5.
Front Neurol ; 8: 147, 2017.
Article in English | MEDLINE | ID: mdl-28473802

ABSTRACT

Studies have reported that the subiculum is one origin of interictal-like discharges in adult patients with temporal lobe epilepsy; however, whether the subiculum represents a site of ictogenesis for neonatal seizures remains unclear. In this study, multi-electrode recording techniques were used to record epileptiform discharges induced by low-Mg2+ or high-K+ artificial cerebrospinal fluid in neonatal mouse hippocampal slices, and the spatiotemporal dynamics of the epileptiform discharges were analyzed. The Na+-K+-2Cl- cotransporter 1 (NKCC1) blocker, bumetanide, was applied to test its effect upon epileptiform discharges in low-Mg2+ model. The effect of N-methyl-d-aspartate receptors (NMDARs) antagonist, d-AP5, upon the epileptiform discharges in high-K+ model was examined. We found that the neonatal subiculum not only relayed epileptiform discharges emanating from the hippocampus proper (HP) but also initiated epileptiform discharges (interictal- and ictal-like discharges) independently. The latency to onset of the first epileptiform discharge initiated in the subiculum was similar to that initiated in the HP. Bumetanide efficiently blocked seizures in the neonatal HP, but was less effectively in suppressing seizures initiated in the subiculum. In high-K+ model, d-AP5 was more effective in blocking seizures initiated in the subiculum than that initiated in the HP. Furthermore, Western blotting analysis showed that NKCC1 expression was lower in the subiculum than that in the HP, whereas the expression of NMDAR subunits, NR2A and NR2B, was higher in the subiculum than that in the HP. Our results revealed that the subiculum was a potential site of ictogenesis in neonatal seizures and possessed similar seizure susceptibility to the HP. GABAergic excitation resulting from NKCC1 may play a less dominant role during ictogenesis in the subiculum than that in the HP. The subicular ictogenesis may be related to the glutamatergic excitation mediated by NMDARs.

6.
Comput Math Methods Med ; 2016: 9580724, 2016.
Article in English | MEDLINE | ID: mdl-27829869

ABSTRACT

The thalamus and hippocampus have been found both involved in the initiation, propagation, and termination of temporal lobe epilepsy. However, the interaction of these regions during seizures is not clear. The present study is to explore whether some regular patterns exist in their interaction during the termination of seizures. Multichannel in vivo recording techniques were used to record the neural activities from the cornu ammonis 1 (CA1) of hippocampus and mediodorsal thalamus (MDT) in mice. The mice were kindled by electrically stimulating basolateral amygdala neurons, and Racine's rank standard was employed to classify the stage of behavioral responses (stage 1~5). The coupling index and directionality index were used to investigate the synchronization and information flow direction between CA1 and MDT. Two main results were found in this study. (1) High levels of synchronization between the thalamus and hippocampus were observed before the termination of seizures at stage 4~5 but after the termination of seizures at stage 1~2. (2) In the end of seizures at stage 4~5, the information tended to flow from MDT to CA1. Those results indicate that the synchronization and information flow direction between the thalamus and the hippocampus may participate in the termination of seizures.


Subject(s)
Epilepsy/physiopathology , Hippocampus/diagnostic imaging , Kindling, Neurologic/physiology , Seizures/diagnostic imaging , Thalamus/diagnostic imaging , Algorithms , Amygdala/diagnostic imaging , Animals , Brain Mapping/methods , Computer Simulation , Disease Models, Animal , Electrodes , Electrophysiology , Image Processing, Computer-Assisted , Male , Mice , Mice, Inbred C57BL , Models, Theoretical , Neurons
7.
Cogn Neurodyn ; 10(6): 481-493, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27891197

ABSTRACT

Oscillatory activity of retinal ganglion cell (RGC) has been observed in various species. It was reported such oscillatory activity is raised within large neural network and involved in retinal information coding. In the present research, we found an oscillation-like activity in ON-OFF RGC of bullfrog retina, and studied the mechanisms underlying the ON and OFF activities respectively. Pharmacological experiments revealed that the oscillation-like activity patterns in both ON and OFF pathways were abolished by GABA receptor antagonists, indicating GABAergic inhibition is essential for generating them. At the meantime, such activities in the ON and OFF pathways showed different responses to several other applied drugs. The oscillation-like pattern in the OFF pathway was abolished by glycine receptor antagonist or gap junction blocker, whereas that in the ON pathway was not affected. Furthermore, the blockade of the ON pathway by metabotropic glutamate receptor agonist led to suppression of the oscillation-like pattern in the OFF pathway. These results suggest that the ON pathway has modulatory effect on the oscillation-like activity in the OFF pathway. Therefore, the mechanisms underlying the oscillation-like activities in the ON and OFF pathways are different: the oscillation-like activity in the ON pathway is likely caused by GABAergic amacrine cell network, while that in the OFF pathway needs the contributions of GABAergic and glycinergic amacrine cell network, as well as gap junction connections.

8.
Front Comput Neurosci ; 10: 75, 2016.
Article in English | MEDLINE | ID: mdl-27486396

ABSTRACT

How visual information is encoded in spikes of retinal ganglion cells (RGCs) is essential in visual neuroscience. In the present study, we investigated the coding properties of mouse RGCs with dual-peak patterns with respect to visual stimulus intervals. We first analyzed the response properties, and observed that the latencies and spike counts of the two response peaks in the dual-peak pattern exhibited systematic changes with the preceding light-OFF interval. We then applied linear discriminant analysis (LDA) to assess the relative contributions of response characteristics of both peaks in information coding regarding the preceding stimulus interval. It was found that for each peak, the discrimination results were far better than chance level based on either latency or spike count, and were further improved by using the combination of the two parameters. Furthermore, the best discrimination results were obtained when latencies and spike counts of both peaks were considered in combination. In addition, the correct rate for stimulation discrimination was higher when RGC population activity was considered as compare to single neuron's activity, and the correct rate was increased with the group size. These results suggest that rate coding, temporal coding, and population coding are all involved in encoding the different stimulus-interval patterns, and the two response peaks in the dual-peak pattern carry complementary information about stimulus interval.

9.
Sheng Li Xue Bao ; 68(4): 414-22, 2016 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-27546502

ABSTRACT

In vertebrate visual system, retina is the first stage for visual information processing. Retinal ganglion cells are the only output neurons of the retina, and their firing activities are dependent on visual stimuli. Retinal ganglion cells can effectively encode visual information via various manners, such as firing rate, temporal structure of spike trains, and concerted activity, etc. Adaptation is one of the basic characteristics of the nervous system, which enables retinal neurons to encode stimuli under a wide variety of natural conditions with limited range in their output. This article reviews the recent studies focused on the coding properties and adaptation of retinal ganglion cells. Relevant issues about dynamical adjustment of coding strategies of retinal ganglion cells in response to different visual stimulation, as well as physiological property and function of adaptation are discussed.


Subject(s)
Retinal Ganglion Cells , Photic Stimulation , Retina
10.
Cogn Neurodyn ; 10(3): 211-23, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27275377

ABSTRACT

Dual-peak responses of retinal ganglion cells (RGCs) are observed in various species, previous researches suggested that both response peaks were involved in retinal information coding. In the present study, we investigated the temporal properties of the dual-peak responses recorded in mouse RGCs elicited by spatially homogeneous light flashes and the effect of the inhibitory inputs mediated by GABAergic and/or glycinergic pathways. We found that the two peaks in the dual-peak responses exhibited distinct temporal dynamics, similar to that of short-latency and long-latency single-peak responses respectively. Pharmacological studies demonstrated that the application of exogenous GABA or glycine greatly suppressed or even eliminated the second peak of the cells' firing activities, while little change was induced in the first peak. Co-application of glycine and GABA led to complete elimination of the second peak. Moreover, application of picrotoxin or strychnine induced dual-peak responses in some cells with transient responses by unmasking a second response phase. These results suggest that both GABAergic and glycinergic pathways are involved in the dual-peak responses of the mouse RGCs, and the two response peaks may arise from distinct pathways that would converge on the ganglion cells.

11.
PLoS One ; 11(4): e0153897, 2016.
Article in English | MEDLINE | ID: mdl-27100891

ABSTRACT

The synchronization among the activities of neural populations in functional regions is one of the most important electrophysiological phenomena in epileptic brains. The spatiotemporal dynamics of phase synchronization was investigated to reveal the reciprocal interaction between different functional regions during epileptogenesis. Local field potentials (LFPs) were recorded simultaneously from the basolateral amygdala (BLA), the cornu ammonis 1 of hippocampus (CA1) and the mediodorsal nucleus of thalamus (MDT) in the mouse amygdala-kindling models during the development of epileptic seizures. The synchronization of LFPs was quantified between BLA, CA1 and MDT using phase-locking value (PLV). During amygdala kindling, behavioral changes (from stage 0 to stage 5) of mice were accompanied by after-discharges (ADs) of similar waveforms appearing almost simultaneously in CA1, MDT, as well as BLA. AD durations were positively related to the intensity of seizures. During seizures at stages 1~2, PLVs remained relatively low and increased dramatically shortly after the termination of the seizures; by contrast, for stages 3~5, PLVs remained a relatively low level during the initial period but increased dramatically before the seizure termination. And in the theta band, the degree of PLV enhancement was positively associated with seizure intensity. The results suggested that during epileptogenesis, the functional regions were kept desynchronized rather than hyper-synchronized during either the initial or the entire period of the seizures; so different dynamic patterns of phase synchronization may be involved in different periods of the epileptogenesis, and this might also reflect that during seizures at different stages, the mechanisms underlying the dynamics of phase synchronization were different.


Subject(s)
Amygdala/physiopathology , Epilepsy/physiopathology , Kindling, Neurologic/physiology , Animals , Male , Mice , Mice, Inbred C57BL
12.
Channels (Austin) ; 8(6): 509-18, 2014.
Article in English | MEDLINE | ID: mdl-25483284

ABSTRACT

Oscillations in intracellular free Ca(2+) concentration ([Ca(2+)]i) have been observed in a variety of cell types. In the present study, we constructed a mathematical model to simulate the caffeine-induced [Ca(2+)]i oscillations based on experimental data obtained from isolated type I horizontal cell of carp retina. The results of model analysis confirm the notion that the caffeine-induced [Ca(2+)]i oscillations involve a number of cytoplasmic and endoplasmic Ca(2+) processes that interact with each other. Using this model, we evaluated the importance of store-operated channel (SOC) in caffeine-induced [Ca(2+)]i oscillations. The model suggests that store-operated Ca(2+) entry (SOCE) is elicited upon depletion of the endoplasmic reticulum (ER). When the SOC conductance is set to 0, caffeine-induced [Ca(2+)]i oscillations are abolished, which agrees with the experimental observation that [Ca(2+)]i oscillations were abolished when SOC was blocked pharmacologically, verifying that SOC is necessary for sustained [Ca(2+)]i oscillations.


Subject(s)
Caffeine/pharmacology , Calcium Signaling , Models, Neurological , Retinal Horizontal Cells/metabolism , Animals , Carps , Retinal Horizontal Cells/drug effects
13.
Neurosci Lett ; 582: 43-8, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25196197

ABSTRACT

The visual stimulus statistics are the fundamental parameters to provide the reference for studying visual coding rules. In this study, the multi-electrode extracellular recording experiments were designed and implemented on bullfrog retinal ganglion cells to explore the neural response properties to the changes in stimulus statistics. The changes in low-order stimulus statistics, such as intensity and contrast, were clearly reflected in the neuronal firing rate. However, it was difficult to distinguish the changes in high-order statistics, such as skewness and kurtosis, only based on the neuronal firing rate. The neuronal temporal filtering and sensitivity characteristics were further analyzed. We observed that the peak-to-peak amplitude of the temporal filter and the neuronal sensitivity, which were obtained from either neuronal ON spikes or OFF spikes, could exhibit significant changes when the high-order stimulus statistics were changed. These results indicate that in the retina, the neuronal response properties may be reliable and powerful in carrying some complex and subtle visual information.


Subject(s)
Photic Stimulation/methods , Retinal Ganglion Cells/physiology , Action Potentials , Animals , In Vitro Techniques , Rana catesbeiana
14.
Article in English | MEDLINE | ID: mdl-25071453

ABSTRACT

Single retinal ganglion cell's (RGCs) response properties, such as spike count and response latency, are known to encode some features of visual stimuli. On the other hand, neuronal response can be modulated by dopamine (DA), an important endogenous neuromodulator in the retina. In the present study, we investigated the effects of DA on the spike count and the response latency of bullfrog ON-OFF RGCs during exposure to different stimulus durations. We found that neuronal spike count and response latency were both changed with stimulus durations, and exogenous DA (10 µM) obviously attenuated the stimulus-duration-dependent response latency change. Information analysis showed that the information about light ON duration was mainly carried by the OFF response and vice versa, and the stimulation information was carried by both spike count and response latency. However, during DA application, the information carried by the response latency was greatly decreased, which suggests that dopaminergic pathway is involved in modulating the role of response latency in encoding the information about stimulus durations.


Subject(s)
Action Potentials/drug effects , Dopamine/pharmacology , Reaction Time/drug effects , Retina/cytology , Retinal Ganglion Cells/drug effects , Action Potentials/physiology , Animals , Biophysics , In Vitro Techniques , Light , Photic Stimulation , Rana catesbeiana , Reaction Time/physiology , Time Factors , Visual Pathways/drug effects , Visual Pathways/physiology
15.
PLoS One ; 9(2): e100095, 2014.
Article in English | MEDLINE | ID: mdl-24918937

ABSTRACT

The mechanisms of release, depletion, and refilling of endoplasmic reticulum (ER) Ca2+ were investigated in type I horizontal cells of the carp retina using a fluo-3-based Ca2+ imaging technique. Exogenous application of caffeine, a ryanodine receptor agonist, induced oscillatory intracellular free Ca2+ concentration ([Ca2+]i) responses in a duration- and concentration-dependent manner. In Ca2+-free Ringer's solution, [Ca2+]i transients could also be induced by a brief caffeine application, whereas subsequent caffeine application induced no [Ca2+]i increase, which implied that extracellular Ca2+ was required for ER refilling, confirming the necessity of a Ca2+ influx pathway for ER refilling. Depletion of ER Ca2+ by thapsigargin triggered a Ca2+ influx which could be blocked by the store-operated channel inhibitor 2-APB, which proved the existence of the store-operated Ca2+ entry pathway. Taken together, these results suggested that after being depleted by caffeine, the ER was replenished by Ca2+ influx via store-operated channels. These results reveal the fine modulation of ER Ca2+ signaling, and the activation of the store-operated Ca2+ entry pathway guarantees the replenishment of the ER so that the cell can be ready for response to the subsequent stimulus.


Subject(s)
Caffeine/pharmacology , Calcium Signaling/drug effects , Carps/metabolism , Retina/cytology , Animals , Calcium/metabolism , Cells, Cultured , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Retina/metabolism
16.
Neural Plast ; 2014: 205912, 2014.
Article in English | MEDLINE | ID: mdl-24729906

ABSTRACT

The hippocampus plays an important role in the genesis of mesial temporal lobe epilepsy, and the entorhinal cortex (EC) may affect the hippocampal network activity because of the heavy interconnection between them. However, the mechanism by which the EC affects the discharge patterns and the transmission mode of epileptiform discharges within the hippocampus needs further study. Here, multielectrode recording techniques were used to study the spatiotemporal characteristics of epileptiform discharges in adult mouse hippocampal slices and combined EC-hippocampal slices and determine whether and how the EC affects the hippocampal neuron discharge patterns. The results showed that low-Mg²âº artificial cerebrospinal fluid induced interictal discharges in hippocampal slices, whereas, in combined EC-hippocampal slices the discharge pattern was alternated between interictal and ictal discharges, and ictal discharges initiated in the EC and propagated to the hippocampus. The pharmacological effect of the antiepileptic drug valproate (VPA) was tested. VPA reversibly suppressed the frequency of interictal discharges but did not change the initiation site and propagation speed, and it completely blocked ictal discharges. Our results suggested that EC was necessary for the hippocampal ictal discharges, and ictal discharges were more sensitive than interictal discharges in response to VPA.


Subject(s)
Entorhinal Cortex/physiology , Epilepsy/physiopathology , Hippocampus/physiopathology , Magnesium Deficiency/physiopathology , Animals , Anticonvulsants/pharmacology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/physiology , Data Interpretation, Statistical , Electroencephalography/drug effects , Entorhinal Cortex/drug effects , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Valproic Acid/pharmacology
17.
Neural Plast ; 2014: 675128, 2014.
Article in English | MEDLINE | ID: mdl-24778885

ABSTRACT

Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures.


Subject(s)
Epilepsy/physiopathology , Muscarinic Agonists , Pilocarpine , Thalamus/physiopathology , Algorithms , Animals , Atropine , CA1 Region, Hippocampal/physiopathology , Data Interpretation, Statistical , Electrodes, Implanted , Electroencephalography/drug effects , Epilepsy/chemically induced , Male , Mice , Mice, Inbred C57BL , Muscarinic Antagonists , Tetrodotoxin/pharmacology
18.
Cogn Neurodyn ; 8(1): 27-35, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24465283

ABSTRACT

In the visual system, neurons often fire in synchrony, and it is believed that synchronous activities of group neurons are more efficient than single cell response in transmitting neural signals to down-stream neurons. However, whether dynamic natural stimuli are encoded by dynamic spatiotemporal firing patterns of synchronous group neurons still needs to be investigated. In this paper we recorded the activities of population ganglion cells in bullfrog retina in response to time-varying natural images (natural scene movie) using multi-electrode arrays. In response to some different brief section pairs of the movie, synchronous groups of retinal ganglion cells (RGCs) fired with similar but different spike events. We attempted to discriminate the movie sections based on temporal firing patterns of single cells and spatiotemporal firing patterns of the synchronous groups of RGCs characterized by a measurement of subsequence distribution discrepancy. The discrimination performance was assessed by a classification method based on Support Vector Machines. Our results show that different movie sections of the natural movie elicited reliable dynamic spatiotemporal activity patterns of the synchronous RGCs, which are more efficient in discriminating different movie sections than the temporal patterns of the single cells' spike events. These results suggest that, during natural vision, the down-stream neurons may decode the visual information from the dynamic spatiotemporal patterns of the synchronous group of RGCs' activities.

19.
J Comput Neurosci ; 36(1): 67-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23748559

ABSTRACT

Synchronized activities among retinal ganglion cells (RGCs) via gap junctions can be increased by exogenous dopamine (DA). During DA application, single neurons' firing activities become more synchronized with its adjacent neighbors. One intriguing question is how the enhanced spatial synchronization alters the temporal firing structure of single neurons. In the present study, firing activities of bullfrog's dimming detectors in response to binary pseudo-random checker-board flickering were recorded via a multi-channel recording system. DA was applied in the retina to modulate synchronized activities between RGCs, and the effect of DA on firing activities of single neurons was examined. It was found that, during application of DA, synchronized activities between single neuron and its neighboring neurons was enhanced. At the meantime, the temporal structures of single neuron spike train changed significantly, and the temporal correlation in single neuron's response decreased. The pharmacological study results indicated that the activation of D1 receptor might have effects on gap junction permeability between RGCs. Our results suggested that the dopaminergic pathway participated in the modulation of spatial and temporal correlation of RGCs' firing activities, and may exert critical effects on visual information processing in the retina.


Subject(s)
Action Potentials/drug effects , Action Potentials/physiology , Dopamine/pharmacology , Gap Junctions/drug effects , Retinal Ganglion Cells/drug effects , Adaptation, Physiological , Animals , Benzazepines/pharmacology , Dopamine Antagonists , Electrophysiology/methods , Gap Junctions/physiology , In Vitro Techniques , Photic Stimulation , Rana catesbeiana , Retina/cytology , Retinal Ganglion Cells/physiology , Sulpiride/pharmacology , Time Factors , Visual Pathways/drug effects , Visual Pathways/physiology
20.
Appl Opt ; 52(4): 866-70, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23385930

ABSTRACT

Specific fluorescent profiles were created by loading quantum-dot (Qdot) mixtures in liquid cores of monodispersed polymer microcapsules, which were used as colorimetric barcodes for small object identification. Since the emission intensities of Qdot-loaded liquid cores maintain a linear relation to the Qdot concentrations and the Qdots in the liquid cores with different emission peaks have no obvious interference, the colorimetric barcodes can be predefined by the compositions of Qdot mixtures. The colorimetric barcodes can be identified easily by recording the emission intensities of the encoded microcapsules at respective Qdot emission peaks with a simple and express algorithm, which are suitable to conduct high-throughput multiplexed assays by flow cytometer for biological screening applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...