Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 208: 108467, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38412704

ABSTRACT

Overgrazing and phosphorus (P) deficiency are two major factors limiting the sustainable development of grassland ecosystems. Exploring plant P utilization and acquisition strategies under grazing can provide a solid basis for determining a reasonable grazing intensity. Both foliar P allocation and root P acquisition are crucial mechanisms for plants to adapt to environmental P availability; however, their changing characteristics and correlation under grazing remain unknown. Here, we investigated foliar P fractions, root P-acquisition traits and gene expression, as well as rhizosphere and bulk soil properties of two dominant plant species, Leymus chinensis (a rhizomatous grass) and Stipa grandis (a bunchgrass), in a field grazing intensity gradient site in Inner Mongolia. Grazing induced different degrees of compensatory growth in the two dominant plant species, increased rhizosphere P availability, and alleviated plant P limitation. Under grazing, the foliar metabolite P of L. chinensis increased, whereas the nucleic acid P of S. grandis increased. Increased P fractions in L. chinensis were positively correlated with increased root exudates and rapid inorganic P absorption. For S. grandis, increased foliar P fractions were positively correlated with more fine roots, more root exudates, and up-regulated expression of genes involved in defense and P metabolism. Overall, efficient root P mobilization and uptake traits, as well as increases in leaf metabolic activity-related P fractions, supported plant compensatory growth under grazing, a process that differed between tiller types. The highest plant productivity and leaf metabolic activity-related P concentrations under medium grazing intensity clarify the underlying basis for sustainable livestock production.


Subject(s)
Ecosystem , Phosphorus , Plants , Poaceae , Rhizosphere , Soil , Nitrogen/analysis
2.
New Phytol ; 240(1): 157-172, 2023 10.
Article in English | MEDLINE | ID: mdl-37547950

ABSTRACT

Phosphorus (P) fertilization can alleviate a soil P deficiency in grassland ecosystems. Understanding plant functional traits that enhance P uptake can improve grassland management. We measured impacts of P addition on soil chemical and microbial properties, net photosynthetic rate (Pn ) and nonstructural carbohydrate concentrations ([NSC]), and root P-uptake rate (PUR), morphology, anatomy, and exudation of two dominant grass species: Leymus chinensis (C3 ) and Cleistogenes squarrosa (C4 ). For L. chinensis, PUR and Pn showed a nonlinear correlation. Growing more adventitious roots compensated for the decrease in P transport per unit root length, so that it maintained a high PUR. For C. squarrosa, PUR and Pn presented a linear correlation. Increased Pn was associated with modifications in root morphology, which further enhanced its PUR and a greater surplus of photosynthate and significantly stimulated root exudation (proxied by leaf [Mn]), which had a greater impact on rhizosheath micro-environment and microbial PLFAs. Our results present correlations between the PUR and the Pn of L. chinensis and C. squarrosa and reveal that NSC appeared to drive the modifications of root morphology and exudation; they provide more objective basis for more efficient P-input in grasslands to address the urgent problem of P deficiency.


Subject(s)
Ecosystem , Grassland , Soil/chemistry , Phosphorus , Photosynthesis , Poaceae , China , Plant Roots
3.
Sci Total Environ ; 876: 163225, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37011672

ABSTRACT

Ongoing climate change and long-term overgrazing are the main causes of grassland degradation worldwide. Phosphorus (P) is typically a limiting nutrient in degraded grassland soils, and its dynamics may play a crucial role in the responses of carbon (C) feedback to grazing. Yet how multiple P processes respond to a multi-level of grazing and its impact on soil organic carbon (SOC), which is critical for sustainable grassland development in the face of climate change, remains inadequately understood. Here, we investigated P dynamics at the ecosystem level in a 7-year-long multi-level grazing field experiment and analyzed their relation to SOC stock. The results showed that, due to the greater P demand for compensatory plant growth, grazing by sheep increased the aboveground plants' P supply (by 70 % at most) while decreasing their relative P limitation. The increase in P in aboveground tissue was associated with changes in plant root-shoot P allocation and P resorption, and the mobilization of moderately labile organic P in soil. Affected by the altered P supply under grazing, corresponding changes to root C stock and soil total P were two major factors impacting SOC. Compensatory growth-induced P demand and P supply processes responded differently to grazing intensity, resulting in differential effects on SOC. Unlike the light and heavy grazing levels, which reduced the SOC stock, moderate grazing was capable of maintaining maximal vegetation biomass, total plant biomass P, and SOC stock, mainly by promoting biologically- and geochemically-driven plant-soil P turnover. Our findings have important implications for addressing future soil C losses and mitigating higher atmospheric CO2 threats, as well as maintaining high productivity in temperate grasslands.


Subject(s)
Ecosystem , Soil , Animals , Sheep , Grassland , Carbon/metabolism , Plants/metabolism , Biomass
4.
Plant Physiol Biochem ; 185: 221-232, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35714430

ABSTRACT

Intensifying nitrogen (N) deposition disturbs the growth of grassland plants due to an imbalance between their carbon (C) and N metabolism. However, it's unclear how plant physiological strategies restore balance. We investigated the effects of multiple N addition levels (0-25 g N m-2 yr-1) on the coordination of C and N metabolism in a dominant grass (Leymus chinensis) in a semiarid grassland in northern China. To do so, we evaluated photosynthetic parameters, leaf N allocation, C- and N-based metabolites, and metabolic enzymes. We found that a moderate N level (10 g N m-2 yr-1) promoted carboxylation and electron transport by allocating more N to the photosynthetic apparatus and increasing ribulose bisphosphate carboxylase/oxygenase activity, thereby increasing photosynthetic capacity. The highest N level (25 g N m-2 yr-1) promoted N investment in nonphotosynthetic pathways and increased the free amino acids in the leaves. N addition stimulated the accumulation of C and N compounds across organs by activating sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. This enhancement triggered a transformation of primary metabolites (nonstructural carbohydrates, proteins, amino acids) to secondary metabolites (flavonoids, phenols, and alkaloids) for temporary storage or as defense compounds. Citric acid, as the C skeleton for enhanced N metabolism, decreased significantly, and malic acid increased by catalysis of phosphoenolpyruvate carboxylase. Our findings show the adaptability of L. chinensis to different N-addition levels by adjusting its allocations of C and N metabolic compounds and confirm the roles of C and N coordination by grassland plants in these adaptations.


Subject(s)
Carbon , Poaceae , Amino Acids/metabolism , Carbon/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Plants/metabolism , Poaceae/metabolism
5.
Innovation (Camb) ; 2(4): 100180, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34877561

ABSTRACT

Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.

6.
J Environ Manage ; 277: 111439, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33035939

ABSTRACT

Overgrazing is the main driver of grassland degradation and productivity reduction in northern China. The restoration of degraded grasslands depends on optimal grazing regimes that modify the source-sink balance to promote best carbon (C) assimilation and allocation, thereby promoting rapid compensatory growth of the grazed plants. We used in situ13CO2 labeling and field regrowth studies of Stipa grandis P.A. Smirn.to examine the effects of different grazing intensities (light, medium, heavy, and grazing exclusion) on photosynthetic C assimilation and partitioning, on reallocation of non-structural carbohydrates during regrowth, and on the underlying regulatory mechanisms. Light grazing increased the sink demand of newly expanded leaves and significantly promoted 13C fixation by increasing the photosynthetic capacity of the leaves and accelerating fructose transfer from the stem. Although C assimilation decreased under medium and heavy grazing, S. grandis exhibited a tolerance strategy that preferentially allocated more starch and 13C to the roots for storage to balance sink competition between newly expanded leaves and the roots. Sucrose phosphate synthase (SPS), sucrose synthase (SS), and other plant hormones regulated source-sink imbalances during regrowth. Abscisic acid promoted accumulation of aboveground biomass by stimulating stem SPS activity, whereas jasmonate increased root starch synthesis, thereby increasing belowground biomass. Overall, S. grandis could optimize source-sink relationships and above- and belowground C allocation to support regrowth after grazing by the regulating activities of SPS, SS and other hormones. These results provide new insights into C budgets under grazing and guidance for sustainable grazing management in semi-arid grasslands.


Subject(s)
Carbon , Poaceae , Biomass , Carbon/analysis , China , Grassland
7.
J Environ Manage ; 277: 111488, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33070017

ABSTRACT

Soil wind erosion is an important ecological environmental problem that is widespread in arid and semi-arid regions. Currently, related studies are mainly focused on spatiotemporal characteristics or analysis of effector mechanisms, and they do not facilitate direct servicing of management decisions. In this paper, we used the Xilingol typical steppe in Inner Mongolia, China, as a study site to develop a decision framework for a comprehensive understanding of soil wind erosion and to promote sustainable management of steppes. In this study, we used the Revised Wind Erosion Equation model to simulate soil wind erosion. We combined this model with linear trend analysis to evaluate the ecological effects of soil wind erosion and wind erosion intensity, and delineated the gravity center migration path. We used the constraint line method to reveal the mechanisms by which climatic factors affected soil wind erosion, achieved the spatial visualization of wind-breaking and sand-fixing service flow, and proposed decision-based regional sustainable development suggestions. The results showed that long-term soil wind erosion will lead to soil coarsening and loss of soil nutrients. Soil wind erosion in the study site showed worsening trends and risks, and as such, ecological environment conservation and management are urgently required. The study framework promotes a clear understanding of the complex relationship of human-earth systems. The study results will aid in the ecological remediation of steppe landscapes and the prevention of desertification and will provide a foundation for win-win management of ecological conservation and economic development in arid and semi-arid regions.


Subject(s)
Soil , Wind , China , Conservation of Natural Resources , Desert Climate , Ecosystem , Humans
8.
J Environ Manage ; 271: 110984, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32579531

ABSTRACT

Plants have different physiological characteristics as the season changes, grazing management in compliance with plant growth and development characteristics may provide new ideas for sustainable livestock development. However, there has been little research on seasonal grazing and plants physiological responses under it. Here, we studied a typical steppe ecosystem of Inner Mongolia, with Leymus chinensis as the dominant species, in five grazing treatments: continuous grazing, seasonal grazing (which started in spring or in early and late summer), and no grazing (the control). We analyzed growth and resistance of L. chinensis in the five treatments by measuring annual primary productivity, morphological traits and various physiological processes. Compared with continuous grazing, seasonal grazing significantly alleviated grassland degradation. The plants were less affected by stress under spring grazing, with net photosynthesis and non-photochemical quenching closer to the control values and with a lower malondialdehyde content. The annual primary production of plants under grazing started in the early and late summer were 3-4 times the value under continuous grazing. Regrowth under early-summer grazing was greatly improved, and stress resistance was stronger with a higher proline content and high antioxidant enzyme activity. And nutrient accumulation at the end of the growing season such as abundant soluble sugars were transferred from aboveground tissue to the roots in September under late-summer grazing, which benefited regrowth the next year. All these physiological processes were regulated by hormonal changes. Our results highlight how plants response grazing stress in different growing seasons and suggest that seasonal grazing can improve the stress resistance and regrowth capacity of forage vegetation, and applying this knowledge can promote more sustainable grazing practices.


Subject(s)
Ecosystem , Poaceae , Animals , China , Grassland , Plant Development , Seasons
9.
Ecol Appl ; 30(5): e02113, 2020 07.
Article in English | MEDLINE | ID: mdl-32112460

ABSTRACT

In temperate grassland ecosystems, grazing can affect plant growth by foraging, trampling, and excretion. The ability of dominant plant species to regrow after grazing is critical, since it allows the regeneration of photosynthetic tissues to support growth. We conducted a field experiment to evaluate the effects of different grazing intensities (control, light, medium, and heavy) on the physiological and biochemical responses of Leymus chinensis and the carbon (C) sources utilized during regrowth. Light grazing promoted regrowth and photoassimilate storage of L. chinensis, by increasing the net photosynthetic rate (Pn ), photosynthetic quenching, light interception, sugar accumulation, sucrose synthase activities, and fructose supply from stems. At medium grazing intensity, L. chinensis had low Pn , light interception, and sugar accumulation, but higher expression of a sucrose transporter gene (LcSUT1) and water-use efficiency, which reflected a tendency to store C in belowground to promote survival. This strategy was associated with regulation by abscisic acid (ABA), jasmonate, and salicylic acid (SA) signaling. However, L. chinensis tolerated heavy grazing by increased ABA and jasmonate-induced promotion of C assimilation and osmotic adjustment, combined with photoprotection against photo-oxidation, suggesting a strategy based on regrowth. In addition, stems were the main C source organs and energy supply rather than roots. Simultaneously, SA represented a weaker defense than ABA and jasmonate. Therefore, L. chinensis adopted different strategies for regrowth under different grazing intensities, and light grazing promoted regrowth the most. Our results demonstrate the regulation of C reserves utilization by phytohormones, and this regulation provides an explanation for recent results about grazing responses.


Subject(s)
Ecosystem , Poaceae , Carbon , Photosynthesis , Plant Development
10.
BMC Plant Biol ; 19(1): 558, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31842774

ABSTRACT

BACKGROUND: Grazing is an important land use in northern China. In general, different grazing intensities had a different impact on the morphological and physiological traits of plants, and especially their photosynthetic capacity. We investigated the responses of Leymus chinensis to light, medium, and heavy grazing intensities in comparison with a grazing exclusion control. RESULTS: With light grazing, L. chinensis showed decreased photosynthetic capacity. The low chlorophyll and carotenoid contents constrained light energy transformation and dissipation, and Rubisco activity was also low, restricting the carboxylation efficiency. In addition, the damaged photosynthetic apparatus accumulated reactive oxygen species (ROS). With medium grazing, more energy was used for thermal dissipation, with high carotene content and high non-photochemical quenching, whereas photosynthetic electron transport was lowest. Significantly decreased photosynthesis decreased leaf C contents. Plants decreased the risk caused by ROS through increased energy dissipation. With high grazing intensity, plants changed their strategy to improve survival through photosynthetic compensation. More energy was allocated to photosynthetic electron transport. Though heavy grazing damaged the chloroplast ultrastructure, adjustment of internal mechanisms increased compensatory photosynthesis, and an increased tiller number facilitated regrowth after grazing. CONCLUSIONS: Overall, the plants adopted different strategies by adjusting their metabolism and growth in response to their changing environment.


Subject(s)
Herbivory , Photosynthesis/physiology , Poaceae/physiology , Animals , Carotenoids/metabolism , China , Chlorophyll/metabolism , Plant Leaves/physiology , Sheep/physiology
11.
Sci Total Environ ; 691: 263-277, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31323572

ABSTRACT

The carbon (C) dynamics of desert steppes play an important role in the C budget of temperate steppes. Using the Terrestrial Ecosystem Regional model (TECO-R) model for desert steppes, we examined the dynamics and potential driving mechanisms for C stocks at different temporal and spatial scales from 2000 to 2017 in northern China. The ecosystem C density averaged 2.73 kg C m-2 and soil organic C accounted for 91.6%. The grassland biome stored 2.85 kg C m-2, which is higher than the shrub biome (2.19 kg C m-2). The ecosystem storage increased by an average of 27.75 g C m-2 yr-1, with the fastest increase in the southeastern part of the study area. The grassland biome storage increased by an average of 33.54 g C m-2 yr-1, versus 25.74 g C m-2 yr-1 for the shrub biome. The desert steppe C stock totaled 288.29 Tg C, and increased at 3.09 Tg C yr-1. An average of >45% of the aboveground biomass was browsed by livestock. The growing season precipitation was significantly positively correlated with changes in the C stock. Increasing temperature was negatively correlated with the C stock, especially for soil carbon. Precipitation was an important driving factor, but warming interacted with precipitation to affect C sequestration during the growing season. Outside the growing season, the increased precipitation and temperature stabilized C sequestration in the desert steppe. This improved understanding of feedbacks between the desert steppe's C cycle and climate will improve predictions of C dynamics in terrestrial ecosystems and of the impacts of climate change.


Subject(s)
Carbon Sequestration , Desert Climate , Ecosystem , China , Climate Change , Seasons , Weather
12.
Front Plant Sci ; 10: 170, 2019.
Article in English | MEDLINE | ID: mdl-30873190

ABSTRACT

Sheepgrass [Leymus chinensis (Trin.) Tzvel] is a valuable forage plant highly significant to the grassland productivity of Euro-Asia steppes. Growth of above-ground tissues of L. chinensis is the major component contributing to the grass yield. Although it is generally known that this species is sensitive to ecosystem disturbance and adverse environments, detailed information of how L. chinensis coping with various nutrient deficiency especially phosphate deprivation (-Pi) is still limited. Here, we investigated impact of Pi-deprivation on shoot growth and biomass accumulation as well as photosynthetic properties of L. chinensis. Growth inhibition of Pi-deprived seedlings was most obvious and reduction of biomass accumulation and net photosynthetic rate (Pn) was 55.3 and 63.3%, respectively, compared to the control plants grown under Pi-repleted condition. Also, we compared these characters with seedlings subjected to low-Pi stress condition. Pi-deprivation caused 18.5 and 12.3% more reduction of biomass and Pn relative to low-Pi-stressed seedlings, respectively. Further analysis of in vivo chlorophyll fluorescence and thylakoid membrane protein complexes using 2D-BN/SDS-PAGE combined with immunoblot detection demonstrated that among the measured photosynthetic parameters, decrease of ATP synthase activity was most pronounced in Pi-deprived plants. Together with less extent of lipid peroxidation of the thylakoid membranes and increased ROS scavenger enzyme activities in the leaves of Pi-deprived seedlings, we suggest that the decreased activity of ATP synthase in their thylakoids is the major cause of the greater reduction of photosynthetic efficiency than that of low-Pi stressed plants, leading to the least shoot growth and biomass production in L. chinensis.

13.
Physiol Plant ; 166(2): 553-569, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30091152

ABSTRACT

Herbivory creates conflicts between a plant's need to allocate resources for growth and defense. It is not yet clear how plants rebalance resource utilization between growth and defense in response to increasing grazing intensity. We measured characteristics of the primary and secondary metabolism of Leymus chinensis at five levels of grazing intensity (control, light, moderate, heavy and extremely heavy). Furthermore, we evaluated hormone signaling by quantifying the impact of key hormones on plant growth and defense. Under light grazing intensity, indole-3-acetic acid and jasmonates appeared to promote the growth of L. chinensis through a high photosynthetic rate, high water-use efficiency and high soluble protein contents, whereas abscisic acid decreased these properties. Under moderate grazing intensity, L. chinensis had a low photosynthetic capacity but greater production of secondary metabolites (tannins, total flavonoids and total phenols), possibly induced by salicylic acid. When the grazing pressure further intensified, L. chinensis translocated more carbohydrates to its roots in order to survive and regrow. Leymus chinensis therefore exhibited a trade-off between growth and defense in order to survive and reproduce under herbivory. Plants developed different mechanisms to enhance their grazing tolerance by means of hormonal regulation.


Subject(s)
Plant Growth Regulators/metabolism , Poaceae/metabolism , Cyclopentanes/metabolism , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Photosynthesis/physiology , Poaceae/genetics
14.
Sci Total Environ ; 569-570: 1466-1477, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27396319

ABSTRACT

Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of soil N availability on soil respiration (RS) is critical to understand soil carbon balances and their responses to global climate change. A 2-year field experiment was conducted to evaluate the response of RS to soil mineral N in a temperate grassland in northern China. RS, abiotic and biotic factors, and N mineralization were measured in the grassland, at rates of N addition ranging from 0 to 25gNm(-2)yr(-1). Annual and dormant-season RS ranged from 241.34 to 283.64g C m(-2) and from 61.34 to 83.84g C m(-2) respectively. High N application significantly increased RS, possibly due to increased root biomass and increased microbial biomass. High N treatment significantly increased soil NO3-N and inorganic N content compared with the control. The ratio of NO3-N to NH4-N and the N mineralization rate were significantly positively correlated with RS, but NH4-N was not correlated or negatively correlated with RS during the growing season. The temperature sensitivity of RS (Q10) was not significantly affected by N levels, and ranged from 1.90 to 2.20, but decreased marginally significantly at high N. RS outside the growing season is an important component of annual RS, accounting for 25.0 to 29.6% of the total. High N application indirectly stimulated RS by increasing soil NO3-N and net nitrification, thereby eliminating soil N limitations, promoting ecosystem productivity, and increasing soil CO2 efflux. Our results show the importance of distinguishing between NO3-N and NH4-N, as their impact on soil CO2 efflux differed.

SELECTION OF CITATIONS
SEARCH DETAIL
...