Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893338

ABSTRACT

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Subject(s)
Bacillus , Indoleacetic Acids , Selenium , Indoleacetic Acids/metabolism , Bacillus/metabolism , Bacillus/drug effects , Selenium/chemistry , Selenium/pharmacology , Selenium/metabolism , Nanoparticles/chemistry , Particle Size
3.
Adv Sci (Weinh) ; 11(18): e2309424, 2024 May.
Article in English | MEDLINE | ID: mdl-38460162

ABSTRACT

Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.


Subject(s)
Breast Neoplasms , Chromatin , Epigenesis, Genetic , Lipid Metabolism , Receptor, ErbB-2 , Trastuzumab , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Female , Epigenesis, Genetic/genetics , Epigenesis, Genetic/drug effects , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Chromatin/metabolism , Chromatin/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Metabolic Reprogramming
4.
Cancers (Basel) ; 16(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38539453

ABSTRACT

tRNA-derived fragments (tRFs) play crucial roles in cancer progression. Among them, tRF-27 has been identified as a key factor in promoting naïve trastuzumab resistance in HER2-positive breast cancer. However, the origin of tRF-27 remains uncertain. In this study, we propose that the upregulated expression of specific cysteine tRNAs may lead to the increased accumulation of tRF-27 in trastuzumab-resistant JIMT1 cells. Mechanistically, the reduced inhibitory H3K27me3 modification at the promoter regions of tRF-27-related tRNA genes in JIMT1 cells, potentially resulting from decreased EZH2 and increased KDM6A activity, may be a critical factor stimulating the transcriptional activity of these tRNA genes. Our research offers fresh insights into the mechanisms underlying elevated tRF-27 levels in trastuzumab-resistant breast cancer cells and suggests potential strategies to mitigate trastuzumab resistance in clinical treatments.

5.
Adv Mater ; 36(16): e2311595, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38190828

ABSTRACT

Wide-bandgap metal halide perovskites have demonstrated promise in multijunction photovoltaic (PV) cells. However, photoinduced phase segregation and the resultant low open-circuit voltage (Voc) have greatly limited the PV performance of perovskite-based multijunction devices. Here, a alloying strategy is reported to achieve uniform distribution of triple cations and halides in wide-bandgap perovskites by doping Rb+ and Cl- with small ionic radii, which effectively suppresses halide phase segregation while promoting the homogenization of surface potential. Based on this strategy, a Voc of 1.33 V is obtained from single-junction perovskite solar cells, and a VOC approaching 3.0 V and a power conversion efficiency of 25.0% (obtained from reverse scan direction, certified efficiency: 24.19%) on an 1.04 cm2 photoactive area can be achieved in a perovskite/perovskite/c-Si triple-junction tandem cell, where the certification efficiency is by far the greatest performance of perovskite-based triple-junction tandem solar cells. This work overcomes the performance deadlock of perovskite-based triple-junction tandem cells by setting a materials-by-design paradigm.

6.
J Colloid Interface Sci ; 661: 123-138, 2024 May.
Article in English | MEDLINE | ID: mdl-38295695

ABSTRACT

Most cases of delayed wound healing are associated with bacterial biofilm infections due to high antibiotic resistance. To improve patient compliance and recovery rates, it is critical to develop minimally invasive and efficient methods to eliminate bacterial biofilms as an alternative to clinical debridement techniques. Herein, we develop a dissolving microneedle system containing Ag nanoparticles (AgNPs)-decorated silk fibroin microspheres (SFM-AgNPs) and antibiotics for synergistic treatment of bacterial biofilm infection. Silk fibroin microspheres (SFM) are controllably prepared in an incompatible system formed by a mixture of protein and carbohydrate solutions by using a mild all-aqueous phase method and serve as biological templates for the synthesis of AgNPs. The SFM-AgNPs exert dose- and time-dependent broad-spectrum antibacterial effects by inducing bacterial adhesion. The combination of SFM-AgNPs with antibiotics breaks the limitation of the antibacterial spectrum and achieves better efficacy with reduced antibiotic dosage. Using hyaluronic acid (HA) as the soluble matrix, the microneedle system containing SFM-AgNPs and anti-Gram-positive coccus drug (Mupirocin) inserts into the bacterial biofilms with sufficient strength, thereby effectively delivering the antibacterial agents and realizing good antibiofilm effect on Staphylococcus aureus-infected wounds. This work demonstrates the great potential for the development of novel therapeutic systems for eradicating bacterial biofilm infections.


Subject(s)
Fibroins , Metal Nanoparticles , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Fibroins/pharmacology , Silver/pharmacology , Microspheres , Bacteria , Biofilms , Silk
7.
Small ; 20(21): e2308553, 2024 May.
Article in English | MEDLINE | ID: mdl-38100299

ABSTRACT

Monolithic perovskite/silicon tandem solar cells have been attracted much attention in recent years. Despite their high performances, the stability issue of perovskite-based devices is recognized as one of the key challenges to realize industrial application. When comes to the perovskite top subcell, the interface between perovskite and electron transporting layers (usually C60) significantly affects the device efficiency as well as the stability due to their poor adhesion. Here, different from the conventional interfacial passivation using metal fluorides, a hybrid intermediate layer is proposed-PMMA functionalized with ionic liquid (IL)-is introduced at the perovskite/C60 interface. The application of PMMA essentially improves the interfacial stability due to its strong hydrophobicity, while adding IL relieves the charge accumulation between PMMA and the perovskite. Thus, an optimal wide-bandgap perovskite solar cells achieves power conversion efficiency of 20.62%. These cells are further integrated as top subcells with silicon bottom cells in a monolithic tandem structure, presenting an optimized PCE up to 27.51%. More importantly, such monolithic perovskite/silicon cells exhibit superior stability by maintaining 90% of initial efficiency after 1200 h under continuous illumination.

8.
J Mater Chem B ; 11(36): 8804-8816, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37668597

ABSTRACT

Osteoarthritis (OA) is a progressive disease, involving the progressive breakdown of cartilage, as well as changes to the synovium and bone. There are currently no disease-modifying treatments available clinically. An increasing understanding of the disease pathophysiology is leading to new potential therapeutics, but improved approaches are needed to deliver these drugs, particularly to cartilage tissue, which is avascular and contains a dense matrix of collagens and negatively charged aggrecan proteoglycans. Cationic delivery vehicles have been shown to effectively penetrate cartilage, but these studies have thus far largely focused on proteins or nanoparticles, and the effects of macromolecular architectures have not yet been explored. Described here is the synthesis of a small library of polycations composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) with linear, 4-arm, or 8-arm structures and varying degrees of polymerization (DP) by reversible addition fragmentation chain-transfer (RAFT) polymerization. Uptake and retention of the polycations in bovine articular cartilage was assessed. While all polycations penetrated cartilage, uptake and retention generally increased with DP before decreasing for the highest DP. In addition, uptake and retention were higher for the linear polycations compared to the 4-arm and 8-arm polycations. In general, the polycations were well tolerated by bovine chondrocytes, but the highest DP polycations imparted greater cytotoxicity. Overall, this study reveals that linear polymer architectures may be more favorable for binding to the cartilage matrix and that the DP can be tuned to maximize uptake while minimizing cytotoxicity.


Subject(s)
Cartilage, Articular , Polymers , Animals , Cattle , Biological Transport , Chondrocytes
9.
Nanomicro Lett ; 15(1): 173, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37420117

ABSTRACT

Design and modification of interfaces have been the main strategies in developing perovskite solar cells (PSCs). Among the interfacial treatments, dipole molecules have emerged as a practical approach to improve the efficiency and stability of PSCs due to their unique and versatile abilities to control the interfacial properties. Despite extensive applications in conventional semiconductors, working principles and design of interfacial dipoles in the performance/stability enhancement of PSCs are lacking an insightful elucidation. In this review, we first discuss the fundamental properties of electric dipoles and the specific roles of interfacial dipoles in PSCs. Then we systematically summarize the recent progress of dipole materials in several key interfaces to achieve efficient and stable PSCs. In addition to such discussions, we also dive into reliable analytical techniques to support the characterization of interfacial dipoles in PSCs. Finally, we highlight future directions and potential avenues for research in the development of dipolar materials through tailored molecular designs. Our review sheds light on the importance of continued efforts in this exciting emerging field, which holds great potential for the development of high-performance and stable PSCs as commercially demanded.

10.
Biomacromolecules ; 24(8): 3629-3637, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37418699

ABSTRACT

Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.


Subject(s)
Hydrogels , Polyethylene Glycols , Polymers , Thiogalactosides
11.
J Phys Chem Lett ; 14(19): 4638-4643, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37166315

ABSTRACT

To date, solution-processing and vapor-deposition fabrication methods have achieved huge successes in high-efficiency perovskite solar cells (PSCs) and satisfy special demanding requirements for diverse application purposes, respectively. Although people realize that the fabrication procedure is crucial in device performance, insightful studies of charge carrier dynamics in perovskite films by different methods still lack. In this work, we compare the carrier behaviors in one-step spin-coated and dual-source coevaporated MAPbI3 perovskite films by combining time-resolved photoluminescence spectroscopy and carrier dynamics simulation. We suggest that strains, lattice orientations, and defects at buried side of perovskite films, which are associated with different preparation processes, lead to variations in carrier behaviors. Hence fabrication of perovskite layers should be elaborately designed in order to satisfy the needs of different carrier behaviors in specified device configurations of PSCs such as smooth planar or textured monolithic tandem structures.

12.
Light Sci Appl ; 12(1): 89, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029112

ABSTRACT

As miniature fibre-optic platforms, micro/nanofibres (MNFs) taper-drawn from silica fibres have been widely studied for applications from optical sensing, nonlinear optics to optomechanics and atom optics. While continuous-wave (CW) optical waveguiding is frequently adopted, so far almost all MNFs are operated in low-power region (e.g., <0.1 W). Here, we demonstrate high-power low-loss CW optical waveguiding in MNFs around 1550-nm wavelength. We show that a pristine MNF, even with a diameter down to 410 nm, can waveguide an optical power higher than 10 W, which is about 30 times higher than demonstrated previously. Also, we predict an optical damage threshold of 70 W. In high-power CW waveguiding MNFs, we demonstrate high-speed optomechanical driving of microparticles in air, and second harmonic generation efficiency higher than those pumped by short pulses. Our results may pave a way towards high-power MNF optics, for both scientific research and technological applications.

13.
J Hazard Mater ; 445: 130610, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37056001

ABSTRACT

The development of materials with highly selective recognition towards Hg2+ is of great significance in environmental monitoring. Herein, a novel thermo-responsive copolymer with Hg2+ recognition property is prepared via thermally-initiated copolymerization of 5'-O-Acryloyl 5-methyl-uridine (APU) and N-isopropylacrylamide (NIPAM). The chemical structure and stimuli-sensitive properties of poly(N-isopropylacrylamide-co-5-methyl-uridine) (P(NIPAM-co-APU)) linear polymers and hydrogel are thoroughly investigated. At the supramolecular level, P(NIPAM-co-APU) linear polymers could respond to both temperature and Hg2+ stimuli with highly selective recognition towards Hg2+ over other 18 metal ion species (at least 5 fold difference) and common anions. Upon capturing Hg2+ by APU units as host metal receptors, the lower critical solution temperature (LCST) of P(NIPAM-co-APU, PNU-7 and PNU-11) linear polymers are significantly shifted more than 10 °C due to the formation of stable APU-Hg2+-APU directed host-guest complexes. Accordingly, at the macroscopic level, P(NIPAM-co-APU) hydrogel display selective and robust recognition of Hg2+ under optimum conditions, and its maximum Hg2+ uptake capacity was 33.1 mg g-1. This work provides a new option for Hg2+ recognition with high selectivity, which could be facilely integrated with other smart systems to achieve satisfactory detection of environmental Hg2+.

14.
Tree Physiol ; 43(6): 1023-1041, 2023 06 07.
Article in English | MEDLINE | ID: mdl-36851850

ABSTRACT

Perennial trees develop and coordinate endogenous response signaling pathways, including their crosstalk and convergence, to cope with various environmental stresses which occur simultaneously in most cases. These processes are involved in gene transcriptional regulations that depend on dynamic interactions between regulatory proteins and corresponding chromatin regions, but the mechanisms remain poorly understood in trees. In this study, we detected chromatin regulatory landscapes of poplar under abscisic acid, methyl jasmonate, salicylic acid and sodium chloride (NaCl) treatment, through integrating ATAC-seq and RNA-seq data. Our results showed that the degree of chromatin accessibility for a given gene is closely related to its expression level. However, unlike the gene expression that shows treatment-specific response patterns, changes in chromatin accessibility exhibit high similarities under these treatments. We further proposed and experimentally validated that a homologous gene copy of RESPONSIVE TO DESICCATION 26 mediates the crosstalk between jasmonic acid and NaCl signaling pathways by directly regulating the stress-responsive genes and that circadian clock-related transcription factors like REVEILLE8 play a central role in response of poplar to these treatments. Overall, our study provides a chromatin insight into the molecular mechanism of transcription regulatory networks in response to different environmental stresses and raises the key roles of the circadian clock of poplar to adapt to adverse environments.


Subject(s)
Chromatin , Sodium Chloride , Chromatin/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Abscisic Acid/metabolism , Signal Transduction/genetics
15.
Adv Mater ; 34(40): e2206193, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35985840

ABSTRACT

Perovskite/silicon tandem solar cells are promising avenues for achieving high-performance photovoltaics with low costs. However, the highest certified efficiency of perovskite/silicon tandem devices based on economically matured silicon heterojunction technology (SHJ) with fully textured wafer is only 25.2% due to incompatibility between the limitation of fabrication technology which is not compatible with the production-line silicon wafer. Here, a molecular-level nanotechnology is developed by designing NiOx /2PACz ([2-(9H-carbazol-9-yl) ethyl]phosphonic acid) as an ultrathin hybrid hole transport layer (HTL) above indium tin oxide (ITO) recombination junction, to serve as a vital pivot for achieving a conformal deposition of high-quality perovskite layer on top. The NiOx interlayer facilitates a uniform self-assembly of 2PACz molecules onto the fully textured surface, thus avoiding direct contact between ITO and perovskite top-cell for a minimal shunt loss. As a result of such interfacial engineering, the fully textured perovskite/silicon tandem cells obtain a certified efficiency of 28.84% on a 1.2-cm2 masked area, which is the highest performance to date based on the fully textured, production-line compatible SHJ. This work advances commercially promising photovoltaics with high performance and low costs by adopting a meticulously designed HTL/perovskite interface.

16.
RSC Adv ; 12(32): 20886-20896, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35919151

ABSTRACT

The extensive use of traditional cooking stoves to meet daily cooking and heating requirements has highlighted the serious problem of indoor and outdoor air pollution. This study evaluates seven improved coal-fired space-heating and cooking stoves and compares them with a widely used stove of an older design, selected as a baseline reference. The seven stoves were selected from a range of candidate improved stoves submitted by manufacturers for testing as part of the air quality improvement in the Hebei Clean Air Project, Hebei Province, China. Stove performance was evaluated when burning raw coal and coal briquettes during the high and low power stages respectively. All seven improved cooking stoves surpassed the baseline stove in combined heating and cooking thermal and emission performance. Among the improved cooking stoves, Model 2-TL was found to have the highest average thermal efficiency, 87.2 ± 0.5%, when burning coal briquettes at high and low power. The lowest emission of PM2.5 was 0.94 ± 0.5 mg MJNET -1, CO 0.55 ± 0.28 g MJNET -1, and CO/CO2 1.1 ± 0.6%, respectively. It is concluded that the use of these improved heating and cooking stoves should be promoted for daily cooking and heating requirements. This strategy will not only save fuel to the benefit of the household, but widespread adoption could contribute to significant reductions of CO and PM2.5 emissions in Hebei Province.

17.
Phys Rev Lett ; 129(1): 013902, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35841559

ABSTRACT

We proposed a photonic approach to a lasing mode supported by low-loss oscillation of polarized bound electrons in an active nano-slit-waveguide cavity, which circumvents the confinement-loss trade-off of nanoplasmonics, and offers an optical confinement down to sub-1-nm level with a peak-to-background ratio of ∼30 dB. Experimentally, the extremely confined lasing field is realized as the dominant peak of a TE_{0}-like lasing mode around 720-nm wavelength, in 1-nm-level width slit-waveguide cavities in coupled CdSe nanowire pairs. The measured lasing characteristics agree well with the theoretical calculations. Our results may pave a way towards new regions for nanolasers and light-matter interaction.

18.
Sci Adv ; 8(27): eabn2026, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857454

ABSTRACT

Laser based on single plasmonic nanoparticle can provide optical frequency radiation far beyond the diffraction limit and is one of the ultimate goals of nanolasers, yet it remains a challenge to be realized because of the inherently high Ohmic loss. Here, we report the direct observation of lasing in microfiber-coupled single plasmonic nanoparticles enabled by strong mode coupling. We show that, by strongly coupling a gold nanorod (GNR) with the whispering gallery cavity of a dye-doped polymer microfiber (with diameter down to 2.0 µm), the substantially enhanced optical coherence of the hybrid photon-plasmon mode and effective gain accumulated from the active microfiber cavity enable single-mode laser emission from the GNR at room temperature with a threshold as low as 2.71 MW/cm2 and a linewidth narrower than 2 nm.

19.
J Phys Chem Lett ; 13(18): 4082-4089, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35499488

ABSTRACT

Organic-inorganic hybrid perovskites have shown tremendous potential for optoelectronic applications. Ion migration within the crystal and across heterointerfaces, however, imposed severe problems with material degradation and performance loss in devices. Encapsulating hybrid perovskite with a thin physical barrier can be essential for suppressing the undesirable interfacial reactions without inhibiting the desirable transport of charge carriers. Here, we demonstrated that nanoscale, pinhole-free Al2O3 layer can be coated directly on the perovskite CH3NH3PbI3 using atomic layer deposition (ALD). The success can be attributed to a multitude of strategies including surface molecular modification and hybrid ALD processing combining the thermal and plasma-enhanced modes. The Al2O3 films provided remarkable protection to the underlying perovskite films, surviving by hours in solvents without noticeable decays in either structural or optical properties. The results advanced the understanding of applying ALD directly on hybrid perovskite and provided new opportunities to implement stable and high-performance devices based on the perovskites.

20.
Adv Mater ; 34(21): e2109879, 2022 May.
Article in English | MEDLINE | ID: mdl-35384082

ABSTRACT

Halide perovskites have shown superior potentials in flexible photovoltaics due to their soft and high power-to-weight nature. However, interfacial residual stress and lattice mismatch due to the large deformation of flexible substrates have greatly limited the performance of flexible perovskite solar cells (F-PSCs). Here, ammonium formate (HCOONH4 ) is used as a pre-buried additive in electron transport layer (ETL) to realize a bottom-up infiltration process for an in situ, integral modification of ETL, perovskite layer, and their interface. The HCOONH4 treatment leads to an enhanced electron extraction in ETL, relaxed residual strain and micro-strain in perovskite film, along with reduced defect densities within these layers. As a result, a top power conversion efficiency of 22.37% and a certified 21.9% on F-PSCs are achieved, representing the highest performance reported so far. This work links the critical connection between multilayer mechanics/defect profiles of ETL-perovskite structure and device performance, thus providing meaningful scientific direction to further narrowing the efficiency gap between F-PSCs and rigid-substrate counterparts.

SELECTION OF CITATIONS
SEARCH DETAIL
...