Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 179: 130-148, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460932

ABSTRACT

Poor skin adhesion and mechanical properties are common problems of pressure-sensitive adhesive (PSA) in transdermal drug delivery system (TDDS). Its poor water compatibility also causes the patch to fall off after sweating or soaking in the application site. To solve this problem, poly (2-Ethylhexyl acrylate-co-N-Vinyl-2-pyrrolidone-co-N-(2-Hydroxyethyl)acrylamide) (PENH), a cross-linked pyrrolidone polyacrylate PSA, was designed to improve the adhesion and water resistance of PSA through electrostatic force and hydrogen bonding system. The structure of PENH was characterized by 1H NMR, FTIR, DSC, and other methods. The mechanism was studied by FTIR, rheological test, and molecular simulation. The results showed that the PENH patch could adhere to human skin for more than 10 days without cold flow, and it could still adhere after sweating or water contact. In contrast, the commercial PSA Duro-Tak® 87-4098 and Duro-Tak® 87-2852 fell off completely on the 3rd and 6th day, respectively, and Duro-Tak® 87-2510 showed a significant dark ring on the second day. Mechanism studies have shown that the hydrogen bond formed by 2-ethylhexyl acrylate (2-EHA), N-vinyl-2-pyrrolidinone (NVP), and N-(2-Hydroxyethyl)acrylamide (HEAA) enhances cohesion, the interaction with skin improves skin adhesion, and the electrostatic interaction with water or drug molecules enhances the ability of water absorption and drug loading. Due to the synergistic effect of hydrogen bonds and electrostatic force, PENH can maintain high cohesion after drug loading or water absorption. PENH provides a choice for the development of water-compatible patches with long-lasting adhesion. STATEMENT OF SIGNIFICANCE: Based on the synergistic effect of hydrogen bonding and electrostatic force, a hydrogen-bonded, cross-linked pyrrolidone acrylate pressure-sensitive adhesive for transdermal drug delivery was designed and synthesized, which has high adhesion and cohesive strength and is non-irritating to the skin. The patch can be applied on the skin surface continuously for more than 10 days without the phenomenon of "dark ring", and the patch can remain adherent after the patient sweats or bathes. This provides a good strategy for choosing a matrix for patches that require prolonged administration.


Subject(s)
Adhesives , Administration, Cutaneous , Hydrogen Bonding , Pyrrolidinones , Static Electricity , Water , Adhesives/chemistry , Adhesives/pharmacology , Water/chemistry , Humans , Pyrrolidinones/chemistry , Pressure , Animals , Acrylates/chemistry , Drug Delivery Systems , Skin/drug effects , Skin/metabolism , Cross-Linking Reagents/chemistry
2.
Phys Chem Chem Phys ; 23(32): 17576-17590, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34369509

ABSTRACT

The rational design of selective histone deacetylase 2 (HDAC2) inhibitors is beneficial for the therapeutic treatment of liver cancer, though HDAC2 is highly homologous to HDAC8, which may lead to undesired side effects due to the pan-inhibition towards HDAC2 and HDAC8. To clarify the structural basis of selective inhibition towards HDAC2 over HDAC8, we utilized multiple in silico strategies, including sequence alignment, structural comparison, molecular docking, molecular dynamics simulations, free energy calculations, alanine scanning mutagenesis, pharmacophore modeling, protein contacts atlas analysis and QM/MM calculations to study the binding patterns of HDAC2/8 selective inhibitors. Through the whole process described above, it is found that although HDAC2 has conserved GLY154 and PHE210 that also exist within HDAC8, namely GLY151 and PHE208, the two isoforms exhibit diverse binding modes towards their inhibitors. Typically, HDAC2 inhibitors interact with the Zn2+ ions through the core chelate group, while HDAC8 inhibitors adopt a bent conformation within the HDAC8 pocket that inclines to be in contact with the Zn2+ ions through the terminal hydroxamic acid group. In summary, our data comprehensively elucidate the selectivity mechanism towards HDAC2 over HDAC8, which would guide the rational design of selective HDAC2 inhibitors for liver cancer treatment.


Subject(s)
Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/metabolism , Amino Acid Sequence , Catalytic Domain , Drug Design , Histone Deacetylase 2/chemistry , Histone Deacetylase 2/genetics , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Humans , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis , Mutation , Protein Binding , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...