Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Sci ; 19(3): 994-1006, 2023.
Article in English | MEDLINE | ID: mdl-36778116

ABSTRACT

Cardiac fibrosis is a common pathological cardiac remodeling in a variety of heart diseases, characterized by the activation of cardiac fibroblasts. Our previous study uncovered that promyelocytic leukemia protein (PML)-associated SUMO processes is a new regulator of cardiac hypertrophy and heart failure. The present study aimed to explore the role of PML in cardiac fibroblasts activation. Here we found that PML is significantly upregulated in cardiac fibrotic tissue and activated cardiac fibroblasts treated with transforming growth factor-ß1 (TGF-ß1). Gain- and loss-of-function experiments showed that PML impacted cardiac fibroblasts activation after TGF-ß1 treatment. Further study demonstrated that p53 acts as the transcriptional regulator of PML, and participated in TGF-ß1 induced the increase of PML expression and PML nuclear bodies (PML-NBs) formation. Knockdown or pharmacological inhibition of p53 produced inhibitory effects on the activation of cardiac fibroblasts. We further found that PML also may stabilize p53 through inhibiting its ubiquitin-mediated proteasomal degradation in cardiac fibroblasts. Collectively, this study suggests that PML crosstalk with p53 regulates cardiac fibroblasts activation, which provides a novel therapeutic strategy for cardiac fibrosis.


Subject(s)
Promyelocytic Leukemia Protein , Transforming Growth Factor beta1 , Tumor Suppressor Protein p53 , Humans , Fibroblasts/metabolism , Fibrosis , Heart , Transforming Growth Factor beta1/pharmacology , Tumor Suppressor Protein p53/metabolism , Promyelocytic Leukemia Protein/metabolism
2.
J Adv Res ; 39: 275-289, 2022 07.
Article in English | MEDLINE | ID: mdl-35777912

ABSTRACT

INTRODUCTION: The principal voltage-gated Na+ channel, NaV1.5 governs heart excitability and conduction. NaV1.5 dysregulation is responsible for ventricular arrhythmias and subsequent sudden cardiac death (SCD) in post-infarct hearts. The transcription factor Meis1 performs a significant role in determining differentiation fate and regenerative capability of cardiomyocytes. However, the functions of Meis1 in ischemic arrhythmias following myocardial infarction (MI) are still largely undefined. OBJECTIVES: Here we aimed to study whether Meis1 could act as a key regulator to mediate cardiac Na+ channel and its underlying mechanisms. METHODS: Heart-specific Meis1 overexpression was established by AAV9 virus injection in C57BL/6 mice. The QRS duration, the incidence of ventricular arrhythmias and cardiac conduction velocity were evaluated by ECG, programmed electrical stimulation and optical mapping techniques respectively. The conventional patch clamp technique was performed to explore the INa characteristics of isolated mouse ventricular myocytes. In vitro, Meis1 was also overexpressed in hypoxic-treated neonatal cardiomyocytes. The analysis of immunoblotting and immunofluorescence were used to detect the changes in the expression of NaV1.5 in each group. RESULTS: We found that forced expression of Meis1 rescued the prolongation of QRS complex, produced anti-arrhythmic activity and improved epicardial conduction velocity in infarcted mouse hearts. In terms of mechanisms, cardiac electrophysiological changes of MI mice can be ameliorated by the recovery of Meis1, which is characterized by the restoration of INa current density and NaV1.5 expression level of cardiomyocytes in the marginal zone of MI mouse hearts. Furthermore, in vitro studies showed that Meis1 was also able to rescue hypoxia-induced decreased expression and dysfunction of NaV1.5 in ventricular myocytes. We further revealed that E3 ubiquitin ligase CDC20 led to the ubiquitination and degradation of Meis1, which blocked the transcriptional regulation of SCN5A by Meis1 and ultimately led to the electrophysiological remodeling in ischemic-hypoxic cardiomyocytes. CONCLUSION: CDC20 mediates ubiquitination of Meis1 to govern the transcription of SCN5A and cardiac electrical conduction in mouse cardiomyocytes. This finding uncovers a new mechanism of NaV1.5 dysregulation in infarcted heart, and provides new therapeutic strategies for malignant arrhythmias and sudden cardiac death following MI.


Subject(s)
Myeloid Ecotropic Viral Integration Site 1 Protein , Myocardial Infarction , Transcription Factors , Animals , Arrhythmias, Cardiac , Death, Sudden, Cardiac , Mice , Mice, Inbred C57BL , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism
3.
Eur J Pharmacol ; 910: 174470, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34478691

ABSTRACT

Myocardial fibrosis in post-myocardial infarction is a self-healing process of the myocardium, making ventricular remodelling difficult to reverse and develop continuously. Fibroblast growth factor 21 (FGF21) plays an essential role in cardiovascular and metabolic diseases. However, the effect and mechanism of FGF21 action on cardiac inflammation and fibrosis caused by myocardial injury have rarely been reported. Adult male Sprague-Dawley rats administered with or without recombinant human basic FGF21 (rhbFGF21) were assessed using echocardiography and haematoxylin-eosin and Masson's trichrome staining to determine the cardiac function and cardiac inflammation and fibrosis levels. FGF21 might improve cardiac remodelling, as characterised by a decrease in the expression of a series of inflammatory and fibrosis-related factors. Moreover, when FGF receptors (FGFRs) were blocked, the effects of FGF21 disappeared. Mechanistically, we found that oxidative stress induced the downregulation of early growth response protein 1 (EGR1), which contributed to inflammatory factors and fibrosis reduction in cardiomyocytes treated with H2O2. Collectively, FGF21 effectively suppressed the inflammation and fibrosis in post-infarcted hearts by regulating FGFR-EGR1.


Subject(s)
Early Growth Response Protein 1/antagonists & inhibitors , Fibroblast Growth Factors/pharmacology , Myocardial Infarction/drug therapy , Myocardium/pathology , Animals , Cells, Cultured , Disease Models, Animal , Early Growth Response Protein 1/metabolism , Fibroblast Growth Factors/therapeutic use , Fibrosis , Heart/drug effects , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Male , Myocardial Infarction/complications , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardium/immunology , Myocytes, Cardiac , Primary Cell Culture , Rats , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Ventricular Remodeling/drug effects , Ventricular Remodeling/immunology
4.
Sci Rep ; 6: 26136, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27188720

ABSTRACT

SOX7 as a tumor suppressor belongs to the SOX F gene subfamily and is associated with a variety of human cancers, including breast cancer, but the mechanisms involved are largely unclear. In the current study, we investigated the interactions between SOX7 and AXIN2 in their co-regulation on the Wnt/ß-catenin signal pathway, using clinical specimens and microarray gene expression data from the GEO database, for their roles in breast cancer. We compared the expression levels of SOX7 and other co-expressed genes in the Wnt/ß-catenin pathway and found that the expression of SOX7, SOX17 and SOX18 was all reduced significantly in the breast cancer tissues compared to normal controls. AXIN2 had the highest co-relativity with SOX7 in the Wnt/ß-catenin signaling pathway. Clinicopathological analysis demonstrated that the down-regulated SOX7 was significantly correlated with advanced stages and poorly differentiated breast cancers. Consistent with bioinformatics predictions, SOX7 was correlated positively with AXIN2 and negatively with ß-catenin, suggesting that SOX7 and AXIN2 might play important roles as co-regulators through the Wnt-ß-catenin pathway in the breast tissue to affect the carcinogenesis process. Our results also showed Smad7 as the target of SOX7 and AXIN2 in controlling breast cancer progression through the Wnt/ß-catenin signaling pathway.


Subject(s)
Axin Protein/metabolism , Breast Neoplasms/pathology , SOXF Transcription Factors/metabolism , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism , Carcinogenesis , Female , Gene Expression Profiling , Humans , Microarray Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...