Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
2.
Sleep Biol Rhythms ; 22(1): 65-73, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38476856

ABSTRACT

Introduction: This study aimed to synthesize existing evidence on the potential association between obstructive sleep apnea (OSA) and low bone mass in adults. Methods: Electronic searches of four main databases were performed. The inclusion criteria consisted of observational studies investigating the relationship between OSA and bone mass, osteoporosis, fractures, or bone metabolism markers in adult population. Bone mineral density (BMD) and T score of lumbar and femur neck, incidence of osteoporosis and fractures, bone metabolism marker levels were extracted as primary outcomes. Results: Among the 693 relevant publications, 10 studies consisting of 158,427 participants met with the inclusion and exclusion criteria. Meta-analysis showed a significant lower BMD of lumbar (mean difference (MD) = - 0.03; 95% CI - 0.05, - 0.01; I2 = 46%), femur neck (MD = - 0.06; 95% CI - 0.12, 0.00; I2 = 71%), and a significant lower T score of lumbar (MD = - 0.42; 95% CI - 0.79, - 0.05; I2 = 63%) in the OSA group. The results suggested that both male (odds ratio (OR) = 2.03; 95% CI 1.23, 3.35; I2 = 38%) and female (OR = 2.56; 95% CI 1.96, 3.34; I2 = 0%) had higher risk of osteoporosis in the OSA group. Besides, meta-analysis also showed that bone-specific alkaline phosphatase was significantly lower in OSA patients (MD = - 1.90; 95% CI - 3.48, - 0.32; I2 = 48%). Conclusions: A potential association between OSA and lower bone mass in adults is preliminarily proved. It also seems plausible that both male and female with OSA have a higher risk of osteoporosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-023-00481-1.

3.
BJOG ; 131(7): 952-960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38168494

ABSTRACT

OBJECTIVE: To assess pelvic floor muscle (PFM) strength and influencing factors among healthy women at different life stages. DESIGN: Multicentre cross-sectional study. SETTING: Fourteen hospitals in China. POPULATION: A total of 5040 healthy women allocated to the following groups (with 1680 women per group): premenopausal nulliparous, premenopausal parous and postmenopausal. METHODS: The PFM strength was evaluated by vaginal manometry. Multivariate logistic regression was used to determine the influencing factors for low PFM strength. MAIN OUTCOME MEASURES: Maximum voluntary contraction pressure (MVCP). RESULTS: The median MVCP values were 36, 35 and 35 cmH2O in premenopausal nulliparous (aged 19-51 years), premenopausal parous (aged 22-61 years), and postmenopausal (aged 40-86 years) women, respectively. In the premenopausal nulliparous group, physical work (odds ratio, OR 2.05) was the risk factor for low PFM strength, which may be related to the chronic increased abdominal pressure caused by physical work. In the premenopausal parous group, the number of vaginal deliveries (OR 1.28) and diabetes (OR 2.70) were risk factors for low PFM strength, whereas sexual intercourse (<2 times per week vs. none, OR 0.55; ≥2 times per week vs. none, OR 0.56) and PFM exercise (OR 0.50) may have protective effects. In the postmenopausal group, the number of vaginal deliveries (OR 1.32) and family history of pelvic organ prolapse (POP) (OR 1.83) were risk factors for low PFM strength. CONCLUSIONS: Physical work, vaginal delivery, diabetes and a family history of POP are all risk factors for low PFM strength, whereas PFM exercises and sexual life can have a protective effect. The importance of these factors varies at different stages of a woman's life.


Subject(s)
Manometry , Muscle Strength , Pelvic Floor , Postmenopause , Premenopause , Vagina , Humans , Female , Middle Aged , Cross-Sectional Studies , Pelvic Floor/physiology , Adult , Manometry/methods , Muscle Strength/physiology , Aged , Postmenopause/physiology , Premenopause/physiology , Vagina/physiology , Risk Factors , Aged, 80 and over , Young Adult , Parity , China/epidemiology , Muscle Contraction/physiology , Pregnancy
4.
Toxics ; 12(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38251016

ABSTRACT

This paper mainly reviews the fate of microplastics, released from used face masks, in the water environment. Through previous experiments, the amount of fiber microplastics released from used face masks into aqueous environments was not negligible, with the maximum microplastics releasing amount reaching 10,000 piece·day-1 for each mask. Microplastic derived from these masks often occurred in the shape of polymeric fibers that resulted from the breakage of the chemical bonds in the plastic fibers by the force of water flow. The potential contact forces between microplastics (originating from face masks) with other pollutants, primarily encompass hydrophobic and electrostatic interactions. This critical review paper briefly illustrates the fate of microplastics derived from disposable face masks, further devising effective strategies to mitigate the environmental impact of plastic particle release from the used personal protective equipment.

5.
Mol Neurobiol ; 61(3): 1655-1672, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37751044

ABSTRACT

In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.


Subject(s)
Depression , Perimenopause , Rats , Animals , Depression/drug therapy , Depression/metabolism , Chromatography, Liquid , Serotonin/metabolism , Tandem Mass Spectrometry , Brain , Hippocampus/metabolism , Disease Models, Animal
6.
Am J Trop Med Hyg ; 110(1): 136-141, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38081061

ABSTRACT

The emergence and wide global spread of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates are of great concern. This multicenter study aimed to investigate the molecular characteristics of CRKP isolates from inpatients in Wuhan, China. From June 2018 to March 2019, 74 nonduplicated CRKP clinical isolates were collected from six hospitals in Wuhan. We determined the minimum inhibitory concentrations of 18 antibiotics and used real-time polymerase chain reaction to detect the presence of disinfectant resistance genes qacEΔ1 and cepA. Pulsed-field gel electrophoresis was conducted to assess the genetic relatedness of isolates. Among the 74 CRKP isolates, the rates of resistance to carbapenems were high: 93.2% to ertapenem, 90.5% to imipenem, and 87.8% to meropenem. All isolates were resistant to at least one carbapenem antibiotic. Of the 74 isolates, 64.9% (48/74) were positive for qacEΔ1 and 93.2% (69/74) for cepA. QacEΔ1 and cepA were detected concomitantly in 46 isolates (62.2%), whereas only 4.1% (3/74) had no disinfectant resistance genes. Pulsed-field gel electrophoresis analysis clustered the 46 CRKP strains co-producing qacEΔ1 and cepA into 15 different clonal clusters (Types A to O). The most common clonal clusters were Type C (41.3%), Type E (13.0%), and Type J (8.7%). The study showed high rates of resistance to most antibiotics and high frequency of qacEΔ1 and cepA in CRKP isolates. Specific clonal dissemination of CRKP was detected within the same hospital or between different hospitals. Therefore, medical institutions should choose and use disinfectants correctly to prevent the spread of CRKP.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Disinfectants , Klebsiella Infections , Humans , Klebsiella pneumoniae , Disinfectants/pharmacology , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Microbial Sensitivity Tests , beta-Lactamases/genetics
8.
J Trace Elem Med Biol ; 80: 127304, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734209

ABSTRACT

BACKGROUND AND PURPOSE: Iron homeostasis disturbance has been suggested to play a role in the pathology of Alzheimer's disease (AD). Systemic iron levels are regulated by iron-related proteins, such as ferritin and transferrin. This meta-analysis was established to evaluate iron and iron-related proteins (ferritin, transferrin, lactoferrin, haptoglobin, hepcidin) in cerebrospinal fluid (CSF) and blood samples of AD patients compared with those in healthy controls (HCs). METHODS: Iron and iron-related proteins in Alzheimer's disease was systematically searched within five databases (PubMed, EMBASE, Web of Science, Cochrane, Scopus) up to October 23, 2022. Fifty-four studies (with data for 5105 participants: 2174 AD patients and 2931 HCs) were included in this meta-analysis. This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), applying Stata 14.0 software. RESULTS: Decreased iron in blood and increased ferritin in CSF were found in AD patients compared with the levels in HCs. AD patients also exhibited lower lactoferrin in serum. Other variables (iron in CSF, ferritin in blood, transferrin in CSF/blood, haptoglobin in CSF/blood, and hepcidin in blood) did not differ between the groups. CONCLUSION: This meta-analysis indicated that iron and iron-related proteins were associated with the risk of AD, suggesting the value of further exploration of iron imbalance in AD using biofluids.


Subject(s)
Alzheimer Disease , Humans , Iron , Hepcidins , Haptoglobins , Lactoferrin , Ferritins , Transferrin
9.
BMC Med ; 21(1): 328, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37635232

ABSTRACT

BACKGROUND: Deoxynivalenol (DON), one of the most prevalent mycotoxins, has been found to cause fetal growth retardation in animals. However, limited evidence exists regarding its effects on pregnant women. METHODS: Maternal urinary concentration of total DON (tDON) and free DON (fDON) in the second trimester was measured using liquid chromatography with tandem mass spectrometry. Provisional daily intake (PDI) of DON was calculated based on tDON concentration. Linear and logistic regression models were used to evaluate the association between DON exposure levels and birth weight, birth length, and the risk of small for gestational age (SGA). RESULTS: Among 1538 subjects, the median concentrations of tDON and fDON were 12.1 ng/mL and 5.1 ng/mL, respectively. The PDI values revealed that the median DON intake was 0.7 µg/kg bw, and 35.9% of the total population exceeded the provisional maximum tolerable daily intake (PMTDI) of 1 µg/kg bw. Compared with the lowest tertile, birth weight decreased by 81.11 g (95% CI: -127.00, -35.23) for tDON (P-trend < 0.001) and 63.02 g (95% CI: -108.72, -17.32) for fDON (P-trend = 0.004) in the highest tertile. Each unit increase in Ln-tDON and Ln-fDON was also inversely associated with birth weight. Furthermore, compared to those who did not exceed PMTDI, pregnant women whose PDI exceeded PMTDI had lower birth weight (ß = -79.79 g; 95% CI: -119.09, -40.49) and birth length (ß = -0.21 cm; 95% CI: -0.34, -0.07), and a higher risk of SGA (OR = 1.48; 95% CI: 1.02, 2.15) in their offspring. Similar associations with birth weight, birth length, and SGA were found when comparing the highest tertile of PDI to the lowest tertile (all P-trend < 0.05). CONCLUSIONS: Maternal DON exposure is related to decreased birth weight. Our findings implicate that DON exposure during pregnancy may cause fetal growth faltering, and measures should be taken to reduce DON exposure in pregnant women.


Subject(s)
Fetal Growth Retardation , Parturition , Female , Humans , Pregnancy , Animals , Birth Weight , Prospective Studies , China/epidemiology
10.
Front Public Health ; 11: 1137968, 2023.
Article in English | MEDLINE | ID: mdl-37441636

ABSTRACT

Background: Monkeypox (MPX), caused by the Monkeypox virus (MPXV), has incurred global attention since it broke out in many countries in recent times, which highlights the need for rapid and reliable diagnosis of MPXV infection. Methods: We combined recombinase polymerase amplification (RPA) with CRISPR/Cas12a-based detection to devise a diagnostic test for detection of MPXV and differentiation of its two clades [Central Africa clade (MPXV-CA) and West Africa clade (MPXV-WA)], and called it MPXV-RCC. The sensitivity, specificity and practicability of this method have been analyzed. Results: The optimal conditions of MPXV-RCC assay include two RPA reactions at 38°C for 25 min and a CRISPR/Cas12a-gRNA detection at 37°C for 10 min. The results of MPXV-RCC assay were indicated by a real-time fluorescence analysis software. Thus, the whole detection process, including rapid template preparation (20 min), RPA reaction (25 min) and CRISPR-based detection (10 min), could be finished within 1 hour. The sensitivity of MPXV-RCC for MPXV-CA and MPXV-WA detection was down to 5~10 copies of recombination plasmids and pseudovirus per reaction. Particularly, MPXV-RCC assay could clearly differentiate MPXV-CA from MPXV-WA, and had no cross-reactivity with other pathogens. In addition, the feasibility of MPXV-RCC assay was further validated by using spiked clinical samples. Conclusion: The MPXV-RCC assay developed here is a promising tool for quick and reliable diagnosis of MPXV infection.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/diagnosis
11.
Article in English | MEDLINE | ID: mdl-37170873

ABSTRACT

A taxonomic study was carried out on strain yzlin-01T, isolated from Dongshan Island seawater. The bacterium was Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, and motile by polar flagella. Growth was observed at temperatures of 10-40 °C, at salinities of 0.5-18 %, and at pH of 6-10. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain yzlin-01T belonged to the genus Halomonas, with the highest sequence similarity to Halomonas malpeensis YU-PRIM-29T (96.7 %), followed by Halomonas johnsoniae T68687T (96.4 %) and Halomonas gomseomensis M12T (96.4 %), and other species of the genus Halomonas (93.4-96.3 %). The ANI and digital DNA-DNA hybridization estimate values between strain yzlin-01T and the closest type strain Halomonas malpeensis YU-PRIM-29T were 77.44 and 21.6 %, respectively. The principal fatty acids were summed feature 8 (consisting of C18 : 1 ω7c and/or C18 : 1 ω6c; 55.7 %), C16 : 0 (20.6 %), C12 : 0 3-OH (6.8 %), summed feature 3 (consisting of C16 : 1 ω7c and/or C16 : 1 ω6c; 5.1 %). The G+C content of the chromosomal DNA was 60.0 mol %. The respiratory quinone was identified as Q-9 (100 %). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, and three unidentified phospholipids were present. Combined genotypic and phenotypic data suggest that strain yzlin-01T represents a novel species within the genus Halomonas, for which the name Halomonas dongshanensis sp. nov. is proposed, with the type strain yzlin-01T (=GDMCC 1.3202T=KCTC 92467T).


Subject(s)
Fatty Acids , Halomonas , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Seawater/microbiology
12.
Molecules ; 28(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110856

ABSTRACT

Metal-organic framework (MOF) materials possess a large specific surface area, high porosity, and atomically dispersed metal active sites, which confer excellent catalytic performance as peroxide (peroxodisulfate (PDS), peroxomonosulfate (PMS), and hydrogen peroxide (H2O2)) activation catalysts. However, the limited electron transfer characteristics and chemical stability of traditional monometallic MOFs restrict their catalytic performance and large-scale application in advanced oxidation reactions. Furthermore, the single-metal active site and uniform charge density distribution of monometallic MOFs result in a fixed activation reaction path of peroxide in the Fenton-like reaction process. To address these limitations, bimetallic MOFs have been developed to improve catalytic activity, stability, and reaction controllability in peroxide activation reactions. Compared with monometallic MOFs, bimetallic MOFs enhance the active site of the material, promote internal electron transfer, and even alter the activation path through the synergistic effect of bimetals. In this review, we systematically summarize the preparation methods of bimetallic MOFs and the mechanism of activating different peroxide systems. Moreover, we discuss the reaction factors that affect the process of peroxide activation. This report aims to expand the understanding of bimetallic MOF synthesis and their catalytic mechanisms in advanced oxidation processes.

13.
Toxics ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36850964

ABSTRACT

The efficient removal of Tetracycline Hydrochloride (TC) from wastewater, which is a difficult process, has attracted increasing attention. Aiming to synchronously achieve the goal of natural waste utilization and PMS activation, we have combined the MOFs material with waste coffee grounds (CG). The catalytic activity of the CG@ZIF-67 composite in the TC removal process was thoroughly evaluated, demonstrating that the TC removal rate could reach 96.3% within 30 min at CG@ZIF-67 composite dosage of 100 mg/L, PMS concertation of 1.0 mM, unadjusted pH 6.2, and contact temperate of 293.15 K. The 1O2 and ·SO4- in the CG@ZIF-67/PMS/TC system would play the crucial role in the TC degradation process, with 1O2 acting as the primary ROS. The oxygen-containing functional groups and graphite N on the surface of CG@ZIF-67 composite would play a major role in efficiently activating PMS and correspondingly degrading TC. In addition, the CG@ZIF-67/PMS/TC system could withstand a wide pH range (3-11). The application of CG in preparing MOF-based composites will provide a new method of removing emerging pollutants from an aqueous solution.

14.
Front Microbiol ; 14: 1078171, 2023.
Article in English | MEDLINE | ID: mdl-36846759

ABSTRACT

Sponges are widely distributed in the global ocean and harbor diverse symbiotic microbes with mutualistic relationships. However, sponge symbionts in the deep sea remain poorly studied at the genome level. Here, we report a new glass sponge species of the genus Bathydorus and provide a genome-centric view of its microbiome. We obtained 14 high-quality prokaryotic metagenome-assembled genomes (MAGs) affiliated with the phyla Nitrososphaerota, Pseudomonadota, Nitrospirota, Bdellovibrionota, SAR324, Bacteroidota, and Patescibacteria. In total, 13 of these MAGs probably represent new species, suggesting the high novelty of the deep-sea glass sponge microbiome. An ammonia-oxidizing Nitrososphaerota MAG B01, which accounted for up to 70% of the metagenome reads, dominated the sponge microbiomes. The B01 genome had a highly complex CRISPR array, which likely represents an advantageous evolution toward a symbiotic lifestyle and forceful ability to defend against phages. A sulfur-oxidizing Gammaproteobacteria species was the second most dominant symbiont, and a nitrite-oxidizing Nitrospirota species could also be detected, but with lower relative abundance. Bdellovibrio species represented by two MAGs, B11 and B12, were first reported as potential predatory symbionts in deep-sea glass sponges and have undergone dramatic genome reduction. Comprehensive functional analysis indicated that most of the sponge symbionts encoded CRISPR-Cas systems and eukaryotic-like proteins for symbiotic interactions with the host. Metabolic reconstruction further illustrated their essential roles in carbon, nitrogen, and sulfur cycles. In addition, diverse putative phages were identified from the sponge metagenomes. Our study expands the knowledge of microbial diversity, evolutionary adaption, and metabolic complementarity in deep-sea glass sponges.

15.
Acta Biomater ; 157: 187-199, 2023 02.
Article in English | MEDLINE | ID: mdl-36521675

ABSTRACT

Severe damage to the uterine endometrium, which results in scar formation and endometrial dysfunction, eventually leads to infertility or pregnancy-related complications. No effective therapeutic treatment is currently available for such injuries owing to the structural complexity, internal environment, and function of the uterus. Three-dimensional (3D) bio-printing to engineer biomimetic structural constructs provides a unique opportunity for tissue regeneration. Herein, using 3D extrusion-based bioprinting (EBB), we constructed a bilayer endometrial construct (EC) based on a sodium alginate-hyaluronic acid (Alg-HA) hydrogel for functional regeneration of the endometrium. The upper layer of the 3D bio-printed EC is a monolayer of endometrial epithelial cells (EECs), while the lower layer has a grid-like microstructure loaded with endometrial stromal cells (ESCs). In a partial full-thickness uterine excision rat model, our bilayer EC not only restored the morphology and structure of the endometrial wall (including organized luminal/ glandular epithelium, stroma, vasculature and the smooth muscle layer), but also significantly improved the reproductive outcome in the surgical area after implantation (75%, 12/16, p < 0.01). Therefore, repair of the uterine endometrium using the developed 3D bio-printed bilayer EC may represent an effective regenerative treatment for severe endometrial injury. STATEMENT OF SIGNIFICANCE: Achieving structural and functional recovery of the endometrium following severe injury is still a challenge. Here, we designed a 3D bio-printed endometrial construct (EC) to mimic the native bilayer structure and cellular components of the endometrium. The bio-printed EC consists of a dense upper layer with endometrial epithelial cells and a lower layer with endometrial stromal cells. In particular, the 3D bio-printed EC significantly improved the reproductive outcome in the surgical area (75%, 12/16) compared to that of the cell-loaded non-printed group (12.5%, 2/16). This study demonstrates that a biomimetic bilayer construct can facilitate endometrial repair and regeneration. Therefore, an endometrial cells-loaded 3D-bioprinted EC is a promising therapeutic option for patients suffering from severe endometrial damage.


Subject(s)
Endometrium , Uterus , Pregnancy , Female , Rats , Animals , Fertility/physiology , Stromal Cells , Epithelium
17.
Front Endocrinol (Lausanne) ; 14: 1275022, 2023.
Article in English | MEDLINE | ID: mdl-38449672

ABSTRACT

The objective of the present study was to investigate the potential role of immunization against INH on follicular development, serum reproductive hormone (FSH, E2, and P4) concentrations, and reproductive performance in beef cattle. A total of 196 non-lactating female beef cattle (4-5 years old) with identical calving records (3 records) were immunized with 0.5, 1.0, 1.5, or 2.0 mg [(T1, n = 58), (T2, n = 46), (T3, n = 42) and (T4, n = 36), respectively] of the pcISI plasmid. The control (C) group (n = 14) was immunized with 1.0 mL 0.9% saline. At 21d after primary immunization, all beef cattle were boosted with half of the primary immunization dose. On day 10 after primary immunization, the beef cattle immunized with INH DNA vaccine evidently induced anti-INH antibody except for the T1 group. The T3 group had the greatest P/N value peak among all the groups. The anti-INH antibody positive rates in T2, T3 and T4 groups were significantly higher than that in C and T1 groups. RIA results indicated that serum FSH concentration in T2 group increased markedly on day 45 after booster immunization; the E2 amount in T3 group was significantly increased on day 10 after primary immunization, and the levels of E2 also improved in T2 and T3 groups after booster immunization; the P4 concentration in T2 group was significantly improved on day 21 after primary immunization. Ultrasonography results revealed that the follicles with different diameter sizes were increased, meanwhile, the diameter and growth speed of ovulatory follicle were significantly increased. Furthermore, the rates of estrous, ovulation, conception, and twinning rate were also significantly enhanced. These findings clearly illustrated that INH DNA vaccine was capable of promoting the follicle development, thereby improving the behavioral of estrous and ovulation, eventually leading to an augment in the conception rates and twinning rate of beef cattle.


Subject(s)
Inhibins , Vaccines, DNA , Female , Animals , Cattle , Immunization , Vaccination , Follicle Stimulating Hormone
18.
Front Pharmacol ; 13: 1020670, 2022.
Article in English | MEDLINE | ID: mdl-36467059

ABSTRACT

Ganciclovir (GCV) is a prodrug nucleoside analogue and is clinically used as antiviral drug for the treatment of cytomegalovirus (CMV) and other infections. Based on the potential anti-inflammatory activity of GCV, this study aimed to investigate the therapeutic effects of ganciclovir on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC), which may involve cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways. Our results demonstrated that incubation of GCV (50 µM) inhibited cGAS-STING pathway in macrophage RAW264.7 cells. Then, it was found that intestinal cGAS-STING pathways were upregulated in UC patients, Crohn's disease colitis (CD) patients, and DSS-induced colitis mice. Intraperitoneal injection of low-dose GCV (10 mg/kg/day) attenuated DSS-induced colitis and abdominal pain in mice. GCV treatment significantly inhibited the upregulation of cGAS-STING pathway in DSS-induced colitis mice. Moreover, DSS-induced colitis and gut dysbiosis was markedly attenuated in STING deficient mice compared with that of wild-type (WT) mice. Finally, there was lacking therapeutic effect of GCV on DSS-induced colitis in STING deficient mice. Together, our results indicated that low-dose GCV ameliorated DSS-induced UC in mice, possibly through inhibiting STING signaling in colonic macrophages, indicating that GCV may be useful for the treatment of UC.

19.
NPJ Regen Med ; 7(1): 68, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418304

ABSTRACT

Stem cell-based tissue regeneration strategies are promising treatments for severe endometrial injuries. However, there are few appropriate seed cells for regenerating a full-thickness endometrium, which mainly consists of epithelia and stroma. Müllerian ducts in female embryonic development develop into endometrial epithelia and stroma. Hence, we first generated human pluripotent stem cells (hPSC)-derived Müllerian duct-like cells (MDLCs) using a defined and effective protocol. The MDLCs are bi-potent, can gradually differentiate into endometrial epithelial and stromal cells, and reconstitute full-thickness endometrium in vitro and in vivo. Furthermore, MDLCs showed the in situ repair capabilities of reconstructing endometrial structure and recovering pregnancy function in full-thickness endometrial injury rats, and their differentiation fate was revealed by single-cell RNA sequencing (scRNA-seq). Our study provides a strategy for hPSC differentiation into endometrial lineages and an alternative seed cell for injured endometrial regeneration.

20.
Comput Struct Biotechnol J ; 20: 5750-5760, 2022.
Article in English | MEDLINE | ID: mdl-36382193

ABSTRACT

Although aging is an increasingly severe healthy, economic, and social global problem, it is far from well-modeling aging due to the aging process's complexity. To promote the aging modeling, here we did the quantitative measurement based on aging blood transcriptome. Specifically, the aging blood transcriptome landscape was constructed through ensemble modeling in a cohort of 505 people, and 1138 age-related genes were identified. To assess the aging rate in the linear dimension of aging, we constructed a simplified linear aging clock, which distinguished fast-aging and slow-aging populations and showed the differences in the composition of immune cells. Meanwhile, the non-linear dimension of aging revealed the transcriptome fluctuations with a crest around the age of 40 and showed that this crest came earlier and was more vigorous in the fast-aging population. Moreover, the aging clock was applied to evaluate the rejuvenation effect of molecules in vitro, such as Nicotinamide Mononucleotide (NMN) and Metformin. In sum, this study developed a de novo aging clock to evaluate age-dependent precise medicine by revealing its fluctuation nature based on comprehensively mining the aging blood transcriptome, promoting the development of personal aging monitoring and anti-aging therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...