Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 104, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168074

ABSTRACT

Spin defects in van der Waals materials offer a promising platform for advancing quantum technologies. Here, we propose and demonstrate a powerful technique based on isotope engineering of host materials to significantly enhance the coherence properties of embedded spin defects. Focusing on the recently-discovered negatively charged boron vacancy center ([Formula: see text]) in hexagonal boron nitride (hBN), we grow isotopically purified h10B15N crystals. Compared to [Formula: see text] in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded [Formula: see text] spin transitions as well as extended coherence time T2 and relaxation time T1. For quantum sensing, [Formula: see text] centers in our h10B15N samples exhibit a factor of 4 (2) enhancement in DC (AC) magnetic field sensitivity. For additional quantum resources, the individual addressability of the [Formula: see text] hyperfine levels enables the dynamical polarization and coherent control of the three nearest-neighbor 15N nuclear spins. Our results demonstrate the power of isotope engineering for enhancing the properties of quantum spin defects in hBN, and can be readily extended to improving spin qubits in a broad family of van der Waals materials.

2.
Phys Rev Lett ; 131(13): 130401, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37832016

ABSTRACT

Floquet (periodic) driving has recently emerged as a powerful technique for engineering quantum systems and realizing nonequilibrium phases of matter. A central challenge to stabilizing quantum phenomena in such systems is the need to prevent energy absorption from the driving field. Fortunately, when the frequency of the drive is significantly larger than the local energy scales of the many-body system, energy absorption is suppressed. The existence of this so-called prethermal regime depends sensitively on the range of interactions and the presence of multiple driving frequencies. Here, we report the observation of Floquet prethermalization in a strongly interacting dipolar spin ensemble in diamond, where the angular dependence of the dipolar coupling helps to mitigate the long-ranged nature of the interaction. Moreover, we extend our experimental observation to quasi-Floquet drives with multiple incommensurate frequencies. In contrast to a single-frequency drive, we find that the existence of prethermalization is extremely sensitive to the smoothness of the applied field. Our results open the door to stabilizing and characterizing nonequilibrium phenomena in quasiperiodically driven systems.

3.
Nat Commun ; 14(1): 3299, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280252

ABSTRACT

Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies. Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy ([Formula: see text]) centers in hexagonal boron nitride (hBN) with varying defect density. By employing advanced dynamical decoupling sequences to selectively isolate different dephasing sources, we observe more than 5-fold improvement in the measured coherence times across all hBN samples. Crucially, we identify that the many-body interaction within the [Formula: see text] ensemble plays a substantial role in the coherent dynamics, which is then used to directly estimate the concentration of [Formula: see text]. We find that at high ion implantation dosage, only a small portion of the created boron vacancy defects are in the desired negatively charged state. Finally, we investigate the spin response of [Formula: see text] to the local charged defects induced electric field signals, and estimate its ground state transverse electric field susceptibility. Our results provide new insights on the spin and charge properties of [Formula: see text], which are important for future use of defects in hBN as quantum sensors and simulators.

SELECTION OF CITATIONS
SEARCH DETAIL