Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 471: 134392, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669932

ABSTRACT

Bioavailability assessment of heavy metals in compost products is crucial for evaluating associated environmental risks. However, existing experimental methods are time-consuming and inefficient. The machine learning (ML) method has demonstrated excellent performance in predicting heavy metal fractions. In this study, based on the conventional physicochemical properties of 260 compost samples, including compost time, temperature, electrical conductivity (EC), pH, organic matter (OM), total phosphorus (TP), total nitrogen, and total heavy metal contents, back propagation neural network, gradient boosting regression, and random forest (RF) models were used to predict the dynamic changes in bioavailable fractions of Cu and Zn during composting. All three models could be used for effective prediction of the variation trend in bioavailable fractions of Cu and Zn; the RF model showed the best prediction performance, with the prediction level higher than that reported in related studies. Although the key factors affecting changes among fractions were different, OM, EC, and TP were important for the accurate prediction of bioavailable fractions of Cu and Zn. This study provides simple and efficient ML models for predicting bioavailable fractions of Cu and Zn during composting, and offers a rapid evaluation method for the safe application of compost products.


Subject(s)
Biological Availability , Composting , Copper , Machine Learning , Zinc , Copper/analysis , Zinc/analysis , Neural Networks, Computer , Hydrogen-Ion Concentration , Soil Pollutants/analysis , Phosphorus/analysis , Phosphorus/chemistry , Nitrogen/analysis , Soil/chemistry , Electric Conductivity , Models, Theoretical
2.
Water Sci Technol ; 84(12): 3791-3798, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34928844

ABSTRACT

As phenol possesses a threat to human health, there is a great demand to search for fast and efficient methods for it to be discharged. In this study, a novel biomaterial was prepared by the immobilization of bacteria on a cationic straw carrier, and the remediation ability of the biomaterial on phenol-containing wastewater was investigated. The free bacteria could degrade 1,000 mg/L phenol within 240 h, while the prepared biomaterial was 192 h, shortening by 48 h that of free bacteria. In addition, the degradation tolerance of biomaterial increased from 1,000 mg/L to 1,200 mg/L than the free bacteria, within 216 h, which shortened by 24 h the degradation time of 1,000 mg/L phenol by free bacteria (240 h). Further, under different pH conditions, the degradation efficiency of phenol by prepared biomaterial was much higher than that of free bacteria. Especially for the lower pH 5, the degradation efficiency of biomaterial was nearly twice that of the free bacteria. This investigation demonstrates that this biomaterial has great potential in the field of remediation of organic pollution.


Subject(s)
Biocompatible Materials , Phenol , Bacteria , Humans
3.
Polymers (Basel) ; 12(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326253

ABSTRACT

A cost-effective, simple, and time-saving method to fabricate mono-dispersed periodic microsphere structures on substrates with patterned sites is very meaningful due to their significance on various biological studies. Herein, a simple and facile method to fabricate mono-dispersed microsphere arrays on porous substrates was developed. The mixture of polystyrene and an organic stabilizer solution which contains aqueous solution, fabricated through shaking, was applied to prepare microemulsion solution. An ordered porous structure was produced by spreading and evaporating the solvent of microemulsion on a glass slide, accompanied by the enrichment of didodecylamine in the cavities. The porous cavities were further modified with polyacrylic acid and poly(diallyldimethylammonium chloride) which could immobilize the microspheres. The charged microspheres were incorporated into the cavities by an electrostatic interaction with the oppositely charged polyelectrolytes. The positive polyelectrolytes with abundant charges as well as a suitable content and dimension of microspheres, ensured the formation of mono-dispersed and ordered arrays. Considering that other charged particles were universally suitable for the present strategy, the reported approach opened an efficient way for the preparation of microsphere-based materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...