Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Med Image Anal ; 97: 103294, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128377

ABSTRACT

Multiple instance learning (MIL)-based methods have been widely adopted to process the whole slide image (WSI) in the field of computational pathology. Due to the sparse slide-level supervision, these methods usually lack good localization on the tumor regions, leading to poor interpretability. Moreover, they lack robust uncertainty estimation of prediction results, leading to poor reliability. To solve the above two limitations, we propose an explainable and evidential multiple instance learning (E2-MIL) framework for whole slide image classification. E2-MIL is mainly composed of three modules: a detail-aware attention distillation module (DAM), a structure-aware attention refined module (SRM), and an uncertainty-aware instance classifier (UIC). Specifically, DAM helps the global network locate more detail-aware positive instances by utilizing the complementary sub-bags to learn detailed attention knowledge from the local network. In addition, a masked self-guidance loss is also introduced to help bridge the gap between the slide-level labels and instance-level classification tasks. SRM generates a structure-aware attention map that locates the entire tumor region structure by effectively modeling the spatial relations between clustering instances. Moreover, UIC provides accurate instance-level classification results and robust predictive uncertainty estimation to improve the model reliability based on subjective logic theory. Extensive experiments on three large multi-center subtyping datasets demonstrate both slide-level and instance-level performance superiority of E2-MIL.


Subject(s)
Image Interpretation, Computer-Assisted , Humans , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Algorithms , Machine Learning
2.
Article in English | MEDLINE | ID: mdl-39167508

ABSTRACT

Biomedical Coreference Resolution focuses on identifying the coreferences in biomedical texts, which normally consists of two parts: (i) mention detection to identify textual representation of biological entities and (ii) finding their coreference links. Recently, a popular approach to enhance the task is to embed knowledge base into deep neural networks. However, the way in which these methods integrate knowledge leads to the shortcoming that such knowledge may play a larger role in mention detection than coreference resolution. Specifically, they tend to integrate knowledge prior to mention detection, as part of the embeddings. Besides, they primarily focus on mention-dependent knowledge (KBase), i.e., knowledge entities directly related to mentions, while ignores the correlated knowledge (K+) between mentions in the mention-pair. For mentions with significant differences in word form, this may limit their ability to extract potential correlations between those mentions. Thus, this paper develops a novel model to integrate both KBase and K+ entities and achieves the state-of-the-art performance on BioNLP and CRAFT-CR datasets. Empirical studies on mention detection with different length reveals the effectiveness of the KBase entities. The evaluation on cross-sentence and match/mismatch coreference further demonstrate the superiority of the K+ entities in extracting background potential correlation between mentions.

3.
IEEE Trans Med Imaging ; 42(12): 3871-3883, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37682644

ABSTRACT

Multiple instance learning (MIL)-based methods have become the mainstream for processing the megapixel-sized whole slide image (WSI) with pyramid structure in the field of digital pathology. The current MIL-based methods usually crop a large number of patches from WSI at the highest magnification, resulting in a lot of redundancy in the input and feature space. Moreover, the spatial relations between patches can not be sufficiently modeled, which may weaken the model's discriminative ability on fine-grained features. To solve the above limitations, we propose a Multi-scale Graph Transformer (MG-Trans) with information bottleneck for whole slide image classification. MG-Trans is composed of three modules: patch anchoring module (PAM), dynamic structure information learning module (SILM), and multi-scale information bottleneck module (MIBM). Specifically, PAM utilizes the class attention map generated from the multi-head self-attention of vision Transformer to identify and sample the informative patches. SILM explicitly introduces the local tissue structure information into the Transformer block to sufficiently model the spatial relations between patches. MIBM effectively fuses the multi-scale patch features by utilizing the principle of information bottleneck to generate a robust and compact bag-level representation. Besides, we also propose a semantic consistency loss to stabilize the training of the whole model. Extensive studies on three subtyping datasets and seven gene mutation detection datasets demonstrate the superiority of MG-Trans.


Subject(s)
Image Processing, Computer-Assisted , Semantics
4.
Article in English | MEDLINE | ID: mdl-37725746

ABSTRACT

The matrix-based Rényi's entropy (MBRE) has recently been introduced as a substitute for the original Rényi's entropy that could be directly obtained from data samples, avoiding the expensive intermediate step of density estimation. Despite its remarkable success in a broad of information-related tasks, the computational cost of MBRE, however, becomes a bottleneck for large-scale applications. The challenge, when facing sequential data, is further amplified due to the requirement of large-scale eigenvalue decomposition on multiple dense kernel matrices constructed by sliding windows in the region of interest, resulting in O(mn3) overall time complexity, where m and n denote the number and the size of windows, respectively. To overcome this issue, we adopt the static MBRE estimator together with a variance reduction criterion to develop randomized approximations for the target entropy, leading to high accuracy with substantially lower query complexity by utilizing the historical estimation results. Specifically, assuming that the changes of adjacent sliding windows are bounded by ß << 1 , which is a trivial case in domains, e.g., time-series analysis, we lower the complexity by a factor of √{ß} . Polynomial approximation techniques are further adopted to support arbitrary α orders. In general, our algorithms achieve O(mn2√{ß}st) total computational complexity, where s, t << n denote the number of vector queries and the polynomial degrees, respectively. Theoretical upper and lower bounds are established in terms of the convergence rate for both s and t , and large-scale experiments on both simulation and real-world data are conducted to validate the effectiveness of our algorithms. The results show that our methods achieve promising speedup with only a trivial loss in performance.

5.
Article in English | MEDLINE | ID: mdl-37751350

ABSTRACT

Prompt tuning has achieved great success in various sentence-level classification tasks by using elaborated label word mappings and prompt templates. However, for solving token-level classification tasks, e.g., named entity recognition (NER), previous research, which utilizes N-gram traversal for prompting all spans with all possible entity types, is time-consuming. To this end, we propose a novel prompt-based contrastive learning method for few-shot NER without template construction and label word mappings. First, we leverage external knowledge to initialize semantic anchors for each entity type. These anchors are simply appended with input sentence embeddings as template-free prompts (TFPs). Then, the prompts and sentence embeddings are in-context optimized with our proposed semantic-enhanced contrastive loss. Our proposed loss function enables contrastive learning in few-shot scenarios without requiring a significant number of negative samples. Moreover, it effectively addresses the issue of conventional contrastive learning, where negative instances with similar semantics are erroneously pushed apart in natural language processing (NLP)-related tasks. We examine our method in label extension (LE), domain-adaption (DA), and low-resource generalization evaluation tasks with six public datasets and different settings, achieving state-of-the-art (SOTA) results in most cases.

6.
IEEE Trans Med Imaging ; 42(10): 3000-3011, 2023 10.
Article in English | MEDLINE | ID: mdl-37145949

ABSTRACT

Pathological primary tumor (pT) stage focuses on the infiltration degree of the primary tumor to surrounding tissues, which relates to the prognosis and treatment choices. The pT staging relies on the field-of-views from multiple magnifications in the gigapixel images, which makes pixel-level annotation difficult. Therefore, this task is usually formulated as a weakly supervised whole slide image (WSI) classification task with the slide-level label. Existing weakly-supervised classification methods mainly follow the multiple instance learning paradigm, which takes the patches from single magnification as the instances and extracts their morphological features independently. However, they cannot progressively represent the contextual information from multiple magnifications, which is critical for pT staging. Therefore, we propose a structure-aware hierarchical graph-based multi-instance learning framework (SGMF) inspired by the diagnostic process of pathologists. Specifically, a novel graph-based instance organization method is proposed, namely structure-aware hierarchical graph (SAHG), to represent the WSI. Based on that, we design a novel hierarchical attention-based graph representation (HAGR) network to capture the critical patterns for pT staging by learning cross-scale spatial features. Finally, the top nodes of SAHG are aggregated by a global attention layer for bag-level representation. Extensive studies on three large-scale multi-center pT staging datasets with two different cancer types demonstrate the effectiveness of SGMF, which outperforms state-of-the-art up to 5.6% in the F1 score.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted
7.
IEEE Trans Med Imaging ; 42(8): 2348-2359, 2023 08.
Article in English | MEDLINE | ID: mdl-37027635

ABSTRACT

Leukemia classification relies on a detailed cytomorphological examination of Bone Marrow (BM) smear. However, applying existing deep-learning methods to it is facing two significant limitations. Firstly, these methods require large-scale datasets with expert annotations at the cell level for good results and typically suffer from poor generalization. Secondly, they simply treat the BM cytomorphological examination as a multi-class cell classification task, thus failing to exploit the correlation among leukemia subtypes over different hierarchies. Therefore, BM cytomorphological estimation as a time-consuming and repetitive process still needs to be done manually by experienced cytologists. Recently, Multi-Instance Learning (MIL) has achieved much progress in data-efficient medical image processing, which only requires patient-level labels (which can be extracted from the clinical reports). In this paper, we propose a hierarchical MIL framework and equip it with Information Bottleneck (IB) to tackle the above limitations. First, to handle the patient-level label, our hierarchical MIL framework uses attention-based learning to identify cells with high diagnostic values for leukemia classification in different hierarchies. Then, following the information bottleneck principle, we propose a hierarchical IB to constrain and refine the representations of different hierarchies for better accuracy and generalization. By applying our framework to a large-scale childhood acute leukemia dataset with corresponding BM smear images and clinical reports, we show that it can identify diagnostic-related cells without the need for cell-level annotations and outperforms other comparison methods. Furthermore, the evaluation conducted on an independent test cohort demonstrates the high generalizability of our framework.


Subject(s)
Deep Learning , Leukemia , Child , Humans , Machine Learning , Image Processing, Computer-Assisted , Leukemia/diagnostic imaging
8.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36617159

ABSTRACT

MOTIVATION: Artificially making clinical decisions for patients with multi-morbidity has long been considered a thorny problem due to the complexity of the disease. Drug recommendations can assist doctors in automatically providing effective and safe drug combinations conducive to treatment and reducing adverse reactions. However, the existing drug recommendation works ignored two critical information. (i) Different types of medical information and their interrelationships in the patient's visit history can be used to construct a comprehensive patient representation. (ii) Patients with similar disease characteristics and their corresponding medication information can be used as a reference for predicting drug combinations. RESULTS: To address these limitations, we propose DAPSNet, which encodes multi-type medical codes into patient representations through code- and visit-level attention mechanisms, while integrating drug information corresponding to similar patient states to improve the performance of drug recommendation. Specifically, our DAPSNet is enlightened by the decision-making process of human doctors. Given a patient, DAPSNet first learns the importance of patient history records between diagnosis, procedure and drug in different visits, then retrieves the drug information corresponding to similar patient disease states for assisting drug combination prediction. Moreover, in the training stage, we introduce a novel information constraint loss function based on the information bottleneck principle to constrain the learned representation and enhance the robustness of DAPSNet. We evaluate the proposed DAPSNet on the public MIMIC-III dataset, our model achieves relative improvements of 1.33%, 1.20% and 2.03% in Jaccard, F1 and PR-AUC scores, respectively, compared to state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: The source code is available at the github repository: https://github.com/andylun96/DAPSNet.


Subject(s)
Precision Medicine , Software , Humans , Deep Learning
9.
IEEE J Biomed Health Inform ; 27(1): 97-108, 2023 01.
Article in English | MEDLINE | ID: mdl-36269914

ABSTRACT

Accurate tissue segmentation in histopathological images is essential for promoting the development of precision pathology. However, the size of the digital pathological image is great, which needs to be tiled into small patches containing limited semantic information. To imitate the pathologist's diagnosis process and model the semantic relation of the whole slide image, We propose a semi-supervised pixel contrastive learning framework (SSPCL) which mainly includes an uncertainty-guided mutual dual consistency learning module (UMDC) and a cross image pixel-contrastive learning module (CIPC). The UMDC module enables efficient learning from unlabeled data through mutual dual-consistency and consensus-based uncertainty. The CIPC module aims at capturing the cross-patch semantic relationship by optimizing a contrastive loss between pixel embeddings. We also propose several novel domain-related sampling methods by utilizing the continuous spatial structure of adjacent image patches, which can avoid the problem of false sampling and improve the training efficiency. In this way, SSPCL significantly reduces the labeling cost on histopathological images and realizes the accurate quantitation of tissues. Extensive experiments on three tissue segmentation datasets demonstrate the effectiveness of SSPCL, which outperforms state-of-the-art up to 5.0% in mDice.


Subject(s)
Semantics , Supervised Machine Learning , Humans , Image Processing, Computer-Assisted
10.
Med Image Anal ; 83: 102652, 2023 01.
Article in English | MEDLINE | ID: mdl-36327654

ABSTRACT

Cancer region detection (CRD) and subtyping are two fundamental tasks in digital pathology image analysis. The development of data-driven models for CRD and subtyping on whole-slide images (WSIs) would mitigate the burden of pathologists and improve their accuracy in diagnosis. However, the existing models are facing two major limitations. Firstly, they typically require large-scale datasets with precise annotations, which contradicts with the original intention of reducing labor effort. Secondly, for the subtyping task, the non-cancerous regions are treated as the same as cancerous regions within a WSI, which confuses a subtyping model in its training process. To tackle the latter limitation, the previous research proposed to perform CRD first for ruling out the non-cancerous region, then train a subtyping model based on the remaining cancerous patches. However, separately training ignores the interaction of these two tasks, also leads to propagating the error of the CRD task to the subtyping task. To address these issues and concurrently improve the performance on both CRD and subtyping tasks, we propose a semi-supervised multi-task learning (MTL) framework for cancer classification. Our framework consists of a backbone feature extractor, two task-specific classifiers, and a weight control mechanism. The backbone feature extractor is shared by two task-specific classifiers, such that the interaction of CRD and subtyping tasks can be captured. The weight control mechanism preserves the sequential relationship of these two tasks and guarantees the error back-propagation from the subtyping task to the CRD task under the MTL framework. We train the overall framework in a semi-supervised setting, where datasets only involve small quantities of annotations produced by our minimal point-based (min-point) annotation strategy. Extensive experiments on four large datasets with different cancer types demonstrate the effectiveness of the proposed framework in both accuracy and generalization.


Subject(s)
Neoplasms , Supervised Machine Learning , Humans , Head , Neoplasms/diagnostic imaging
11.
BMC Bioinformatics ; 23(1): 549, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536280

ABSTRACT

Extracting knowledge from heterogeneous data sources is fundamental for the construction of structured biomedical knowledge graphs (BKGs), where entities and relations are represented as nodes and edges in the graphs, respectively. Previous biomedical knowledge extraction methods simply considered limited entity types and relations by using a task-specific training set, which is insufficient for large-scale BKGs development and downstream task applications in different scenarios. To alleviate this issue, we propose a joint continual learning biomedical information extraction (JCBIE) network to extract entities and relations from different biomedical information datasets. By empirically studying different joint learning and continual learning strategies, the proposed JCBIE can learn and expand different types of entities and relations from different datasets. JCBIE uses two separated encoders in joint-feature extraction, hence can effectively avoid the feature confusion problem comparing with using one hard-parameter sharing encoder. Specifically, it allows us to adopt entity augmented inputs to establish the interaction between named entity recognition and relation extraction. Finally, a novel evaluation mechanism is proposed for measuring cross-corpus generalization errors, which was ignored by traditional evaluation methods. Our empirical studies show that JCBIE achieves promising performance when continual learning strategy is adopted with multiple corpora.


Subject(s)
Biomedical Research , Data Mining , Data Mining/methods , Neural Networks, Computer , Knowledge , Longitudinal Studies
12.
Sci Data ; 9(1): 387, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803960

ABSTRACT

The study of histopathological phenotypes is vital for cancer research and medicine as it links molecular mechanisms to disease prognosis. It typically involves integration of heterogenous histopathological features in whole-slide images (WSI) to objectively characterize a histopathological phenotype. However, the large-scale implementation of phenotype characterization has been hindered by the fragmentation of histopathological features, resulting from the lack of a standardized format and a controlled vocabulary for structured and unambiguous representation of semantics in WSIs. To fill this gap, we propose the Histopathology Markup Language (HistoML), a representation language along with a controlled vocabulary (Histopathology Ontology) based on Semantic Web technologies. Multiscale features within a WSI, from single-cell features to mesoscopic features, could be represented using HistoML which is a crucial step towards the goal of making WSIs findable, accessible, interoperable and reusable (FAIR). We pilot HistoML in representing WSIs of kidney cancer as well as thyroid carcinoma and exemplify the uses of HistoML representations in semantic queries to demonstrate the potential of HistoML-powered applications for phenotype characterization.


Subject(s)
Diagnostic Imaging , Terminology as Topic , Humans , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Semantic Web , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Vocabulary, Controlled
13.
Article in English | MEDLINE | ID: mdl-35834451

ABSTRACT

Subsampling is an important technique to tackle the computational challenges brought by big data. Many subsampling procedures fall within the framework of importance sampling, which assigns high sampling probabilities to the samples appearing to have big impacts. When the noise level is high, those sampling procedures tend to pick many outliers and thus often do not perform satisfactorily in practice. To tackle this issue, we design a new Markov subsampling strategy based on Huber criterion (HMS) to construct an informative subset from the noisy full data; the constructed subset then serves as refined working data for efficient processing. HMS is built upon a Metropolis-Hasting procedure, where the inclusion probability of each sampling unit is determined using the Huber criterion to prevent over scoring the outliers. Under mild conditions, we show that the estimator based on the subsamples selected by HMS is statistically consistent with a sub-Gaussian deviation bound. The promising performance of HMS is demonstrated by extensive studies on large-scale simulations and real data examples.

14.
IEEE Trans Med Imaging ; 41(12): 3611-3623, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35839184

ABSTRACT

Tissue segmentation is an essential task in computational pathology. However, relevant datasets for such a pixel-level classification task are hard to obtain due to the difficulty of annotation, bringing obstacles for training a deep learning-based segmentation model. Recently, contrastive learning has provided a feasible solution for mitigating the heavy reliance of deep learning models on annotation. Nevertheless, applying contrastive loss to the most abstract image representations, existing contrastive learning frameworks focus on global features, therefore, are less capable of encoding finer-grained features (e.g., pixel-level discrimination) for the tissue segmentation task. Enlightened by domain knowledge, we design three contrastive learning tasks with multi-granularity views (from global to local) for encoding necessary features into representations without accessing annotations. Specifically, we construct: (1) an image-level task to capture the difference between tissue components, i.e., encoding the component discrimination; (2) a superpixel-level task to learn discriminative representations of local regions with different tissue components, i.e., encoding the prototype discrimination; (3) a pixel-level task to encourage similar representations of different tissue components within a local region, i.e., encoding the spatial smoothness. Through our global-to-local pre-training strategy, the learned representations can reasonably capture the domain-specific and fine-grained patterns, making them easily transferable to various tissue segmentation tasks in histopathological images. We conduct extensive experiments on two tissue segmentation datasets, while considering two real-world scenarios with limited or sparse annotations. The experimental results demonstrate that our framework is superior to existing contrastive learning methods and can be easily combined with weakly supervised and semi-supervised segmentation methods.

15.
BMC Med Inform Decis Mak ; 22(1): 116, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35501781

ABSTRACT

BACKGROUND: Bio-entity Coreference Resolution (CR) is a vital task in biomedical text mining. An important issue in CR is the differential representation of identical mentions as their similar representations may make the coreference more puzzling. However, when extracting features, existing neural network-based models may bring additional noise to the distinction of identical mentions since they tend to get similar or even identical feature representations. METHODS: We propose a context-aware feature attention model to distinguish similar or identical text units effectively for better resolving coreference. The new model can represent the identical mentions based on different contexts by adaptively exploiting features, which enables the model reduce the text noise and capture the semantic information effectively. RESULTS: The experimental results show that the proposed model brings significant improvements on most of the baseline for coreference resolution and mention detection on the BioNLP dataset and CRAFT-CR dataset. The empirical studies further demonstrate its superior performance on the differential representation and coreferential link of identical mentions. CONCLUSIONS: Identical mentions impose difficulties on the current methods of Bio-entity coreference resolution. Thus, we propose the context-aware feature attention model to better distinguish identical mentions and achieve superior performance on both coreference resolution and mention detection, which will further improve the performance of the downstream tasks.


Subject(s)
Data Mining , Semantics , Data Mining/methods , Humans , Neural Networks, Computer
16.
Neural Comput ; 29(7): 1879-1901, 2017 07.
Article in English | MEDLINE | ID: mdl-28410056

ABSTRACT

Recently, a new framework, Fredholm learning, was proposed for semisupervised learning problems based on solving a regularized Fredholm integral equation. It allows a natural way to incorporate unlabeled data into learning algorithms to improve their prediction performance. Despite rapid progress on implementable algorithms with theoretical guarantees, the generalization ability of Fredholm kernel learning has not been studied. In this letter, we focus on investigating the generalization performance of a family of classification algorithms, referred to as Fredholm kernel regularized classifiers. We prove that the corresponding learning rate can achieve [Formula: see text] ([Formula: see text] is the number of labeled samples) in a limiting case. In addition, a representer theorem is provided for the proposed regularized scheme, which underlies its applications.

17.
IEEE Trans Cybern ; 46(5): 1189-201, 2016 May.
Article in English | MEDLINE | ID: mdl-26011874

ABSTRACT

Learning with l1 -regularizer has brought about a great deal of research in learning theory community. Previous known results for the learning with l1 -regularizer are based on the assumption that samples are independent and identically distributed (i.i.d.), and the best obtained learning rate for the l1 -regularization type algorithms is O(1/√m) , where m is the samples size. This paper goes beyond the classic i.i.d. framework and investigates the generalization performance of least square regression with l1 -regularizer ( l1 -LSR) based on uniformly ergodic Markov chain (u.e.M.c) samples. On the theoretical side, we prove that the learning rate of l1 -LSR for u.e.M.c samples l1 -LSR(M) is with the order of O(1/m) , which is faster than O(1/√m) for the i.i.d. counterpart. On the practical side, we propose an algorithm based on resampling scheme to generate u.e.M.c samples. We show that the proposed l1 -LSR(M) improves on the l1 -LSR(i.i.d.) in generalization error at the low cost of u.e.M.c resampling.

18.
IEEE Trans Syst Man Cybern B Cybern ; 42(3): 939-49, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22345545

ABSTRACT

Recently, much attention has been drawn to the problem of matrix completion, which arises in a number of fields, including computer vision, pattern recognition, sensor network, and recommendation systems. This paper proposes a novel algorithm, named robust alternative minimization (RAM), which is based on the constraint of low rank to complete an unknown matrix. The proposed RAM algorithm can effectively reduce the relative reconstruction error of the recovered matrix. It is numerically easier to minimize the objective function and more stable for large-scale matrix completion compared with other existing methods. It is robust and efficient for low-rank matrix completion, and the convergence of the RAM algorithm is also established. Numerical results showed that both the recovery accuracy and running time of the RAM algorithm are competitive with other reported methods. Moreover, the applications of the RAM algorithm to low-rank image recovery demonstrated that it achieves satisfactory performance.


Subject(s)
Algorithms , Artificial Intelligence , Decision Support Techniques , Models, Theoretical , Pattern Recognition, Automated/methods , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL