Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Neurosci Methods ; 401: 110007, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37952831

ABSTRACT

BACKGROUND: Blood perfusion of the optic nerve (ON) plays a key role in many optic neuropathies. Microvascular changes precede or accompany neuronal changes, and detecting these changes at an early stage may facilitate early treatment to avoid blindness. However, the quantification of ON blood perfusion remains a challenge. This study aimed to evaluate the viability of three-dimensional pseudocontinuous arterial spin labelling (3D-pCASL) MRI for the quantification of ON blood flow (BF). NEW METHOD: The ON segmentation was performed using nnFormer on a cohort of ten participants (4 males, 6 females, 25-59 years old). Subsequently, the mean BF of each ON segment was calculated using whole brain 3D-pCASL image data. RESULTS: The average ON-BF values of the left and right intraorbital segments, left and right intracanalicular segments, left and right intracranial segments, optic chiasma, and left and right optic tract were 41.308 mL/100 g/min, 43.281 mL/100 g/min, 53.188 mL/100 g/min, 57.202 mL/100 g/min, 45.089 mL/100 g/min, 49.554 mL/100 g/min, 42. 326 mL/100 g/min, 43.831 mL/100 g/min and 45.176 mL/100 g/min, respectively. The ON-BF correlated with cerebral BF (r = 0.503, p = 0.024). COMPARISON WITH EXISTING METHOD(S): The 3D-pCASL can measure tissue microvascular blood perfusion in absolute quantitative units with good test-retest repeatability over a wide field of view and without restrictions on depth. The use of the nnFormer makes the measurement easy, objective and reproducible. CONCLUSIONS: The study showed that, 3D-pCASL may be a promising tool for detecting abnormal ON-BF. In particular, 3D-pCASL coupled with the nnFormer provides an objective, reproducible, and reliable method to quantify BF in ON.


Subject(s)
Magnetic Resonance Angiography , Magnetic Resonance Imaging , Male , Female , Humans , Adult , Middle Aged , Magnetic Resonance Angiography/methods , Spin Labels , Cerebrovascular Circulation/physiology , Optic Nerve
2.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873099

ABSTRACT

Controllable assembly of cells and tissues offers potential for advancing disease and development modeling and regenerative medicine. The body's natural scaffolding material is the extracellular matrix, composed largely of collagen I. However, challenges in precisely controlling collagen assembly limit collagen's applicability as a primary bioink or glue for biofabrication. Here, we introduce a set of biopatterning methods, termed Tunable Rapid Assembly of Collagenous Elements (TRACE), that enables instant gelation and rapid patterning of collagen I solutions with wide range of concentrations. Our methods are based on accelerating the gelation of collagen solutions to instantaneous speeds via macromolecular crowding, allowing versatile patterning of both cell-free and cell-laden collagen-based bioinks. We demonstrate notable applications, including macroscopic organoid engineering, rapid free-form 3D bioprinting, contractile cardiac ventricle model, and patterning of high-resolution (below 5 (m) collagen filament. Our findings enable more controllable and versatile applications for multi-scale collagen-based biofabrication.

3.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873466

ABSTRACT

During development and disease progression, cells are subject to osmotic and mechanical stresses that modulate cell volume, which fundamentally influences cell homeostasis and has been linked to a variety of cellular functions. It is not well understood how the mechanobiological state of cells is programmed by the interplay of intracellular organization and complex extracellular mechanics when stimulated by cell volume modulation. Here, by controlling cell volume via osmotic pressure, we evaluate physical phenotypes (including cell shape, morphodynamics, traction force, and extracellular matrix (ECM) remodeling) and molecular signaling (YAP), and we uncover fundamental transitions in active biophysical states. We demonstrate that volumetric compression shifts the ratiometric balance of Rho GTPase activities, thereby altering mechanosensing and cytoskeletal organization in a reversible manner. Specifically, volumetric compression controls cell spreading, adhesion formation, and YAP nuclear translocation, while maintaining cell contractile activity. Furthermore, we show that on physiologically relevant fibrillar collagen I matrices, which are highly non-elastic, cells exhibit additional modes of cell volume-dependent mechanosensing that are not observable on elastic substrates. Notably, volumetric compression regulates the dynamics of cell-ECM interactions and irreversible ECM remodeling via Rac-directed protrusion dynamics, at both the single-cell level and the multicellular level. Our findings support that cell volume is a master biophysical regulator and reveal its roles in cell mechanical state transition, cell-ECM interactions, and biophysical tissue programming.

4.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873476

ABSTRACT

Liver cancer involves tumor cells rapidly growing within a packed tissue environment. Patient tumor tissues reveal densely packed and deformed cells, especially at tumor boundaries, indicative of physical crowding and compression. It is not well understood how these physical signals modulate tumor evolution and therapeutic susceptibility. Here we investigate the impact of volumetric compression on liver cancer (HepG2) behavior. We find that conditioning cells under a highly compressed state leads to major transcriptional reprogramming, notably the loss of hepatic markers, the epithelial-to-mesenchymal transition (EMT)-like changes, and altered calcium signaling-related gene expression, over the course of several days. Biophysically, compressed cells exhibit increased Rac1-mediated cell spreading and cell-extracellular matrix interactions, cytoskeletal reorganization, increased YAP and ß-catenin nuclear translocation, and dysfunction in cytoplasmic and mitochondrial calcium signaling. Furthermore, compressed cells are resistant to chemotherapeutics and desensitized to apoptosis signaling. Apoptosis sensitivity can be rescued by stimulated calcium signaling. Our study demonstrates that volumetric compression is a key microenvironmental factor that drives tumor evolution in multiple pathological directions and highlights potential countermeasures to re-sensitize therapy-resistant cells. Significance statement: Compression can arise as cancer cells grow and navigate within the dense solid tumor microenvironment. It is unclear how compression mediates critical programs that drive tumor progression and therapeutic complications. Here, we take an integrative approach in investigating the impact of compression on liver cancer. We identify and characterize compressed subdomains within patient tumor tissues. Furthermore, using in vitro systems, we induce volumetric compression (primarily via osmotic pressure but also via mechanical force) on liver cancer cells and demonstrate significant molecular and biophysical changes in cell states, including in function, cytoskeletal signaling, proliferation, invasion, and chemoresistance. Importantly, our results show that compressed cells have impaired calcium signaling and acquire resistance to apoptosis, which can be countered via calcium mobilization.

5.
Proc Natl Acad Sci U S A ; 120(39): e2220062120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37722033

ABSTRACT

Physical forces are prominent during tumor progression. However, it is still unclear how they impact and drive the diverse phenotypes found in cancer. Here, we apply an integrative approach to investigate the impact of compression on melanoma cells. We apply bioinformatics to screen for the most significant compression-induced transcriptomic changes and investigate phenotypic responses. We show that compression-induced transcriptomic changes are associated with both improvement and worsening of patient prognoses. Phenotypically, volumetric compression inhibits cell proliferation and cell migration. It also induces organelle stress and intracellular oxidative stress and increases pigmentation in malignant melanoma cells and normal human melanocytes. Finally, cells that have undergone compression become more resistant to cisplatin treatment. Our findings indicate that volumetric compression is a double-edged sword for melanoma progression and drives tumor evolution.


Subject(s)
Melanoma , Transcriptome , Humans , Melanoma/genetics , Gene Expression Profiling , Melanocytes , Phenotype
6.
Adv Mater ; 35(16): e2207882, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36895051

ABSTRACT

The extracellular matrix is the biophysical environment that scaffolds mammalian cells in the body. The main constituent is collagen. In physiological tissues, collagen network topology is diverse with complex mesoscopic features. While studies have explored the roles of collagen density and stiffness, the impact of complex architectures remains not well-understood. Developing in vitro systems that recapitulate these diverse collagen architectures is critical for understanding physiologically relevant cell behaviors. Here, methods are developed to induce the formation of heterogeneous mesoscopic architectures, referred to as collagen islands, in collagen hydrogels. These island-containing gels have highly tunable inclusions and mechanical properties. Although these gels are globally soft, there is regional enrichment in the collagen concentration at the cell-scale. Collagen-island architectures are utilized to study mesenchymal stem cell behavior, and it is demonstrated that cell migration and osteogenic differentiation are altered. Finally, induced pluripotent stem cells are cultured in island-containing gels, and it is shown that the architecture is sufficient to induce mesodermal differentiation. Overall, this work highlights complex mesoscopic tissue architectures as bioactive cues in regulating cell behavior and presents a novel collagen-based hydrogel that captures these features for tissue engineering applications.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Collagen , Tissue Engineering/methods , Cell Differentiation , Hydrogels/pharmacology , Mammals
7.
Acta Biomater ; 155: 167-181, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36371004

ABSTRACT

3D in vitro tumor models have recently been investigated as they can recapitulate key features in the tumor microenvironment. Reconstruction of a biomimetic scaffold is critical in these models. However, most current methods focus on modulating local properties, e.g. micro- and nano-scaled topographies, without capturing the global millimeter or intermediate mesoscale features. Here we introduced a method for modulating the collagen I-based extracellular matrix structure by disruption of fibrillogenesis and the gelation process through mechanical agitation. With this method, we generated collagen scaffolds that are thickened and wavy at a larger scale while featuring global softness. Thickened collagen patches were interconnected with loose collagen networks, highly resembling collagen architecture in the tumor stroma. This thickened collagen network promoted tumor cell dissemination. In addition, this novel modified scaffold triggered differences in morphology and migratory behaviors of tumor cells. Altogether, our method for altered collagen architecture paves new ways for studying in detail cell behavior in physiologically relevant biological processes. STATEMENT OF SIGNIFICANCE: Tumor progression usually involves chronic tissue damage and repair processes. Hallmarks of tumors are highly overlapped with those of wound healing. To mimic the tumor milieu, collagen-based scaffolds are widely used. These scaffolds focus on modulating microscale topographies and mechanics, lacking global architecture similarity compared with in vivo architecture. Here we introduced one type of thick collagen bundles that mimics ECM architecture in human skin scars. These thickened collagen bundles are long and wavy while featuring global softness. This collagen architecture imposes fewer steric restraints and promotes tumor cell dissemination. Our findings demonstrate a distinct picture of cell behaviors and intercellular interactions, highlighting the importance of collagen architecture and spatial heterogeneity of the tumor microenvironment.


Subject(s)
Collagen , Neoplasms , Humans , Collagen/chemistry , Cell Movement , Collagen Type I/chemistry , Extracellular Matrix/metabolism , Neoplasms/metabolism , Tissue Scaffolds/chemistry , Tumor Microenvironment
8.
Commun Biol ; 5(1): 202, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241781

ABSTRACT

Drug treatment against liver cancer has limited efficacy due to heterogeneous response among liver cancer subtypes. In addition, the functional biophysical phenotypes which arise from this heterogeneity and contribute to aggressive invasive behavior remain poorly understood. This study interrogated how heterogeneity in liver cancer subtypes contributes to differences in invasive phenotypes and drug response. Utilizing histological analysis, quantitative 2D invasion metrics, reconstituted 3D hydrogels, and bioinformatics, our study linked cytoskeletal dynamics to differential invasion profiles and drug resistance in liver cancer subtypes. We investigated cytoskeletal regulation in 2D and 3D culture environments using two liver cancer cell lines, SNU-475 and HepG2, chosen for their distinct cytoskeletal features and invasion profiles. For SNU-475 cells, a model for aggressive liver cancer, many cytoskeletal inhibitors abrogated 2D migration but only some suppressed 3D migration. For HepG2 cells, cytoskeletal inhibition did not significantly affect 3D migration but did affect proliferative capabilities and spheroid core growth. This study highlights cytoskeleton driven phenotypic variation, their consequences and coexistence within the same tumor, as well as efficacy of targeting biophysical phenotypes that may be masked in traditional screens against tumor growth.


Subject(s)
Cytoskeleton , Liver Neoplasms , Cell Line , Humans , Hydrogels/pharmacology
9.
Lab Chip ; 22(6): 1126-1136, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35174373

ABSTRACT

Sickle cell disease (SCD) is a genetic condition that causes abnormalities in hemoglobin mechanics. Those affected are at high risk of vaso-occlusive crisis (VOC), which can induce life-threatening symptoms. The development of measurements related to vaso-occlusion facilitates the diagnosis of the patient's disease state. To complement existing readouts, we design a microfluidic-informatics analytical system with varied confined geometries for the quantification of sickle cell disease occlusion. We detect an increase in physical occlusion events in the most severe hemoglobin SS group. We use bioinformatics and modeling to quantify the in vitro disease severity score (DSS) of individual patients. We also show the potential effect of hydration, clinically recommended for crisis management, on reducing the disease severity of high-risk patients. Overall, we demonstrate the device as an easy-to-use assay for quick occlusion information extraction with a simple setup and minimal additional instruments. We show the device can provide physical readouts distinct from clinical data. We also show the device sensitivity in separate samples from patients with different disease severity. Finally, we demonstrate the system as a potential platform for testing the effectiveness of therapeutic strategies (e.g. hydration) on reducing sickle cell disease severity.


Subject(s)
Anemia, Sickle Cell , Microfluidics , Anemia, Sickle Cell/diagnosis , Humans , Informatics
10.
Nature ; 601(7892): 245-251, 2022 01.
Article in English | MEDLINE | ID: mdl-34912119

ABSTRACT

Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants enable them to respond to pathogens by activating the production of defence metabolites that orchestrate immune responses1-4. How the production of defence metabolites is promoted by immune receptors and coordinated with broad-spectrum resistance remains elusive. Here we identify the deubiquitinase PICI1 as an immunity hub for PTI and ETI in rice (Oryza sativa). PICI1 deubiquitinates and stabilizes methionine synthetases to activate methionine-mediated immunity principally through biosynthesis of the phytohormone ethylene. PICI1 is targeted for degradation by blast fungal effectors, including AvrPi9, to dampen PTI. Nucleotide-binding domain, leucine-rich-repeat-containing receptors (NLRs) in the plant immune system, such as PigmR, protect PICI1 from effector-mediated degradation to reboot the methionine-ethylene cascade. Natural variation in the PICI1 gene contributes to divergence in basal blast resistance between the rice subspecies indica and japonica. Thus, NLRs govern an arms race with effectors, using a competitive mode that hinges on a critical defence metabolic pathway to synchronize PTI with ETI and ensure broad-spectrum resistance.


Subject(s)
Oryza , Plant Diseases , Methionine , Oryza/genetics , Oryza/microbiology , Plant Diseases/microbiology , Plant Immunity/genetics , Plants , Signal Transduction/genetics
11.
Nat Prod Res ; 36(18): 4776-4781, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34852695

ABSTRACT

The leaf of Nelumbo nucifera (Family Nelumbonaceae) has been widely included in the diet of Chinese people from the time of the Min Dynasty. In this study, a randomized double-blind trial (n = 60) was performed to determine the effects of extract from sun dried Nelumbo nucifera leaves (NnEx), which included quercetin-3-glucuronide (Q3GA) as the main components, in overweight patients (24 kg/m2

Subject(s)
Nelumbo , Female , Humans , Male , Overweight/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves
12.
Cell ; 184(21): 5391-5404.e17, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597584

ABSTRACT

Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.


Subject(s)
Calcium/metabolism , Free Radical Scavengers/metabolism , Fungal Proteins/metabolism , Oryza/immunology , Plant Immunity , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Disease Resistance/genetics , Models, Biological , Oryza/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Protein Binding , Protein Stability , Reproduction , Species Specificity , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Zea mays/immunology
13.
mSphere ; 6(4): e0038121, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34346700

ABSTRACT

The bacterial genus Staphylococcus comprises a large group of pathogenic and nonpathogenic species associated with an array of host species. Staphylococci are differentiated into coagulase-positive or coagulase-negative groups based on the capacity to promote clotting of plasma, a phenotype historically associated with the ability to cause disease. However, the genetic basis of this important diagnostic and pathogenic trait across the genus has not been examined to date. Here, we selected 54 representative staphylococcal species and subspecies to examine coagulation of plasma derived from six representative host species. In total, 13 staphylococcal species mediated coagulation of plasma from at least one host species including one previously identified as coagulase negative (Staphylococcus condimenti). Comparative genomic analysis revealed that coagulase activity correlated with the presence of a gene (vwb) encoding the von Willebrand binding protein (vWbp) whereas only the Staphylococcus aureus complex contained a gene encoding staphylocoagulase (Coa), the classical mediator of coagulation. Importantly, S. aureus retained vwb-dependent coagulase activity in an S. aureus strain deleted for coa whereas deletion of vwb in Staphylococcus pseudintermedius resulted in loss of coagulase activity. Whole-genome-based phylogenetic reconstruction of the Staphylococcus genus revealed that the vwb gene has been acquired on at least four different occasions during the evolution of the Staphylococcus genus followed by allelic diversification via mutation and recombination. Allelic variants of vWbp from selected coagulase-positive staphylococci mediated coagulation in a host-dependent manner indicative of host-adaptive evolution. Taken together, we have determined the genetic and evolutionary basis of staphylococcal coagulation, revealing vWbp to be its archetypal determinant. IMPORTANCE The ability of some species of staphylococci to promote coagulation of plasma is a key pathogenic and diagnostic trait. Here, we provide a comprehensive analysis of the coagulase positivity of the staphylococci and its evolutionary genetic basis. We demonstrate that the von Willebrand binding protein rather than staphylocoagulase is the archetypal coagulation factor of the staphylococci and that the vwb gene has been acquired several times independently during the evolution of the staphylococci. Subsequently, vwb has undergone adaptive diversification to facilitate host-specific functionality. Our findings provide important insights into the evolution of pathogenicity among the staphylococci and the genetic basis for a defining diagnostic phenotype.


Subject(s)
Bacterial Proteins/genetics , Coagulase/genetics , Coagulase/metabolism , Evolution, Molecular , Staphylococcus/enzymology , Staphylococcus/genetics , Animals , Birds , Blood Coagulation , Genome, Bacterial , Genomics/methods , Horses , Humans , Phylogeny , Rabbits , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus/classification , Staphylococcus/metabolism , Swine , Virulence Factors/genetics
14.
Sci China Life Sci ; 64(12): 2175-2185, 2021 12.
Article in English | MEDLINE | ID: mdl-33905099

ABSTRACT

The bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), belonging to Xanthomonas sp., causes one of the most destructive vascular diseases in rice worldwide, particularly in Asia and Africa. To better understand Xoo pathogenesis, we performed genome sequencing of the Korea race 1 strain DY89031 (J18) and analyzed the phylogenetic tree of 63 Xoo strains. We found that the rich diversity of evolutionary features is likely associated with the rice cultivation regions. Further, virulence effector proteins secreted by the type III secretion system (T3SS) of Xoo showed pathogenesis divergence. The genome of DY89031 shows a remarkable difference from that of the widely prevailed Philippines race 6 strain PXO99A, which is avirulent to rice Xa21, a well-known disease resistance (R) gene that can be broken down by DY89031. Interestingly, plant inoculation experiments with the PXO99A transformants expressing the DY89031 genes enabled us to identify additional TAL (transcription activator-like) and non-TAL effectors that may support DY89031-specific virulence. Characterization of DY89031 genome and identification of new effectors will facilitate the investigation of the rice-Xoo interaction and new mechanisms involved.


Subject(s)
Genome, Bacterial , Oryza/microbiology , Plant Diseases/microbiology , Virulence/genetics , Xanthomonas/genetics , Crops, Agricultural/microbiology , Phylogeny , Real-Time Polymerase Chain Reaction , Whole Genome Sequencing , Xanthomonas/growth & development , Xanthomonas/pathogenicity
15.
Integr Biol (Camb) ; 13(1): 1-16, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33443535

ABSTRACT

Tumor emboli-aggregates of tumor cells within vessels-pose a clinical challenge as they are associated with increased metastasis and tumor recurrence. When growing within a vessel, tumor emboli are subject to a unique mechanical constraint provided by the tubular geometry of the vessel. Current models of tumor emboli use unconstrained multicellular tumor spheroids, which neglect this mechanical interplay. Here, we modeled a lymphatic vessel as a 200 µm-diameter channel in either a stiff or soft, bioinert agarose matrix to create a vessel-like constraint model (VLCM), and we modeled colon or breast cancer tumor emboli with aggregates of HCT116 or SUM149PT cells, respectively. The stiff matrix VLCM constrained the tumor emboli to the cylindrical channel, which led to continuous growth of the emboli, in contrast to the growth rate reduction that unconstrained spheroids exhibit. Emboli morphology in the soft matrix VLCM, however, was dependent on the magnitude of mechanical mismatch between the matrix and the cell aggregates. In general, when the elastic modulus of the matrix of the VLCM was greater than the emboli (EVLCM/Eemb > 1), the emboli were constrained to grow within the channel, and when the elastic modulus of the matrix was less than the emboli (0 < EVLCM/Eemb < 1), the emboli bulged into the matrix. Due to a large difference in myosin II expression between the cell lines, we hypothesized that tumor cell aggregate stiffness is an indicator of cellular force-generating capability. Inhibitors of myosin-related force generation decreased the elastic modulus and/or increased the stress relaxation of the tumor cell aggregates, effectively increasing the mechanical mismatch. The increased mechanical mismatch after drug treatment was correlated with increased confinement of tumor emboli growth along the channel, which may translate to increased tumor burden due to the increased tumor volume within the diffusion distance of nutrients and oxygen.


Subject(s)
Breast Neoplasms , Lymphatic Vessels , Neoplastic Cells, Circulating , Female , Humans , Spheroids, Cellular
16.
Tissue Eng Part A ; 27(7-8): 454-466, 2021 04.
Article in English | MEDLINE | ID: mdl-33397202

ABSTRACT

Ductal carcinoma in situ (DCIS) is a precancerous stage breast cancer, where abnormal cells are contained within the duct, but have not invaded into the surrounding tissue. However, only 30-40% of DCIS cases are likely to progress into an invasive ductal carcinoma (IDC), while the remainder are innocuous. Since little is known about what contributes to the transition from DCIS to IDC, clinicians and patients tend to opt for treatment, leading to concerns of overdiagnosis and overtreatment. In vitro models are currently being used to probe how DCIS transitions into IDC, but many models do not take into consideration the macroscopic tissue architecture and the biomechanical properties of the microenvironment. In this study, we modeled an organotypic mammary duct as a channel molded in a collagen matrix and lined with basement membrane. By adjusting the concentration of collagen (4 and 8 mg/mL), we modulated the stiffness and morphological properties of the matrix and examined how an assortment of breast cells, including the isogenic MCF10 series that spans the range from healthy to aggressive, behaved within our model. We observed distinct characteristics of breast cancer progression such as hyperplasia and invasion. Normal mammary epithelial cells (MCF10A) formed a single-cell layer on the lumen surface, whereas the most aggressive (MCF10CA1) were several cell layers thick. The model captured collagen concentration-dependent protrusive behaviors by the MCF10A and MCF10CA1 cells, as well as a known invasive cell line (MDA-MB-231). The MCF10A and MCF10CA1 cells extended protrusions into the lower collagen concentration matrix, while the MDA-MB-231 cells fully invaded matrices of either collagen concentration but to a greater distance in the higher collagen concentration matrix. Our results show that the model can recapitulate different stages of breast cancer progression and that the MCF10 series is adaptable to physiologically relevant in vitro studies, demonstrating the potential of both the model and cell lines to elucidate key factors that may contribute to understanding the transition from DCIS to IDC. Impact statement The success of early preventative measures for breast cancer has left patients susceptible to overdiagnosis and overtreatment. Limited knowledge of factors driving an invasive transition has inspired the development of in vitro models that accurately capture this phenomenon. However, current models tend to neglect the macroscopic architecture and biomechanical properties of the mammary duct. In this study, we introduce an organotypic model that recapitulates the cylindrical geometry of the tissue and the altered stroma seen in tumor microenvironments. Our model was able to capture distinct features associated with breast cancer progression, demonstrating its potential to uncover novel insights into disease progression.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Cell Line, Tumor , Female , Humans , Tumor Microenvironment
17.
Acta Biomater ; 108: 128-141, 2020 05.
Article in English | MEDLINE | ID: mdl-32194262

ABSTRACT

Stromal collagen is upregulated surrounding a solid tumor and presents as dense, thick, linearized, and aligned bundles. The collagen bundles are continually remodeled during tumor progression, and their orientation with respect to the tumor boundary has been correlated with invasive state. Currently, reconstituted-collagen gels are the standard in vitro tumor cell-extracellular matrix interaction model. The reticular, dense, and isotropic nanofiber (~900 nm-diameter, on average) gels do not, however, recapitulate the in vivo structural features of collagen bundling and alignment. Here, we present a rapid and simple method to fabricate bundles of collagen type I, whose average thickness may be varied between about 4 µm and 9 µm dependent upon diluent temperature and ionic strength. The durability and versatility of the collagen bundles was demonstrated with their incorporation into two in vitro models where the thickness and alignment of the collagen bundles resembled various in vivo arrangements. First, collagen bundles aligned by a microfluidic device elicited cancer cell contact guidance and enhanced their directional migration. Second, the presence of the collagen bundles in a bio-inert agarose hydrogel was shown to provide a route for cancer cell outgrowth. The unique structural features of the collagen bundles advance the physiological relevance of in vitro collagen-based tumor models for accurately capturing tumor cell-extracellular matrix interactions. STATEMENT OF SIGNIFICANCE: Collagen in the tumor microenvironment is upregulated and remodeled into dense, thick, and aligned bundles that are associated with invasive state. Current collagen-based in vitro models are based on reticular, isotropic nanofiber gels that do not fully recapitulate in vivo tumor stromal collagen. We present a simple and robust method of rapidly fabricating cell-scale collagen bundles that better mimic the remodeled collagen surrounding a tumor. Interacting with the bundles, cancer cells exhibited drastically different phenotypic behaviors, compared to nanofiber scaffolds. This work reveals the importance of microscale architecture of in vitro tumor models. The collagen bundles provide physiologically relevant collagen morphologies that may be easily incorporated into existing models of tumor cell-extracellular matrix interactions.


Subject(s)
Collagen , Extracellular Matrix , Collagen Type I , Connective Tissue , Hydrogels
18.
Sci Rep ; 8(1): 3849, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29497104

ABSTRACT

Biophysical properties of the extracellular matrix (ECM) are known to play a significant role in cell behavior. To gain a better understanding of the effects of the biophysical microenvironment on cell behavior, the practical challenge is longitudinally monitoring behavioral variations within a population to make statistically powerful assessments. Population-level measurements mask heterogeneity in cell responses, and large-scale individual cell measurements are often performed in a one-time, snapshot manner after removing cells from their matrix. Here we present an easy and low-cost method for large-scale, longitudinal studies of heterogeneous cell behavior in 3D hydrogel matrices. Using a platform we term "the drop-patterning chip", thousands of cells were simultaneously transferred from microwell arrays and fully embedded, only using the force of gravity, in precise patterns in 3D collagen I or Matrigel. This method allows for throughputs approaching 2D patterning methods that lack phenotypic information on cell-matrix interactions, and does not rely on special equipment and cell treatments that may result in a proximal stiff surface. With a large and yet well-organized group of cells captured in 3D matrices, we demonstrated the capability of locating selected individual cells and monitoring cell division, migration, and proliferation for multiple days.


Subject(s)
Biophysical Phenomena/physiology , Cell Culture Techniques/methods , Hydrogels/metabolism , Cell Communication/drug effects , Cell Culture Techniques/instrumentation , Cell Line, Tumor , Collagen , Drug Combinations , Extracellular Matrix/metabolism , HCT116 Cells , Humans , Hydrogels/pharmacology , Laminin , Proteoglycans , Tumor Microenvironment/drug effects
19.
Adv Mater ; 28(34): 7533-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27348794

ABSTRACT

Unique elastomeric rotary actuators based on pneumatically driven peristaltic motion are demonstrated. Using silicone-based wheels, these motors enable a new class of soft locomotion not found in nature, which is capable of withstanding impact, traversing irregular terrain, and operating in water. For soft robotics, this work marks progress toward providing torque without bending actuators.

20.
PLoS One ; 5(12): e15168, 2010 Dec 13.
Article in English | MEDLINE | ID: mdl-21179198

ABSTRACT

Papain was purified from spray-dried Carica papaya latex using aqueous two-phase system (ATPS). Then it was recovered from PEG phase by in situ immobilization or preparing cross-linked enzyme aggregates (CLEAs). The Plackett-Burman design and the central composite design (CCD) together with the response surface methodology (RSM) were used to optimize the APTS processes. The highly purified papain (96-100%) was achieved under the optimized conditions: 40% (w/w) 15 mg/ml enzyme solution, 14.33-17.65% (w/w) PEG 6000, 14.27-14.42% (w/w) NaH2PO4/K2HPO4 and pH 5.77-6.30 at 20°C. An in situ enzyme immobilization approach, carried out by directly dispersing aminated supports and chitosan beads into the PEG phase, was investigated to recover papain, in which a high immobilization yield (>90%) and activity recovery (>40%) was obtained. Moreover, CLEAs were successfully used in recovering papain from PEG phase with a hydrolytic activity hundreds times higher than the carrier-bound immobilized papain.


Subject(s)
Carica/metabolism , Papain/chemistry , Biochemistry/methods , Chitosan/chemistry , Chromatography, High Pressure Liquid/methods , Cross-Linking Reagents/chemistry , Electrophoresis, Polyacrylamide Gel , Enzymes/chemistry , Enzymes, Immobilized/isolation & purification , Hydrogen-Ion Concentration , Latex/chemistry , Papain/isolation & purification , Polyethylene Glycols/chemistry , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...